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Chapter 1

Finite Element Equations

The present section provides a derivation of the governing finite element equations with
respect to a given boundary value problem. Formulation of the set of elements imple-
mented within the GEO FEM program is provided next. Throughout this section, the
standard engineering notation is used (see, e.g., [2]).
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Figure 1.1: a) Plane strain analysis, b) Axisymmetric analysis

Limiting our attention to plane strain or axisymmetric analysis, see Fig. 1.1, the stress
and strain tensors written in the vector form are

• Plane strain analysis

σT =
{
σxx σyy σxy σzz

}
, ǫT =

{
εxx εyy 2εxy εzz

}
, (1.1)

• Axisymmetric analysis

σT =
{
σrr σyy σry σθθ

}
, ǫT =

{
εrr εyy 2εry εθθ =

u

r

}
, (1.2)

1



2 CHAPTER 1. FINITE ELEMENT EQUATIONS

where θ represents the circumferential (hoop) direction, u is the radial displacement and
r is the current radius. We further introduce the (3 × 4) matrix ∂ defined as

∂ =




∂

∂x
0

∂

∂y
0

0
∂

∂y

∂

∂x
0

0 0 0
∂

∂z



, (1.3)

and the (3 × 4) matrix n that stores the components of the unit normal vector,

n =



nx 0 ny 0
0 ny nx 0
0 0 0 nz


 . (1.4)

1.1 Kinematics discretization

Consider a body Ω bounded by a surface Γ, Fig 1.2. Γu represents a portion of Γ with
prescribed displacements u while tractions t are prescribed on Γt (Γu ∩ Γt = ∅).

n

Γu

Γt

u

Ω

Γ

t

Figure 1.2: Body Ω with boundary surface Γ

In the standard finite element method the displacement field can be interpolated over
the body Ω using the nodal shape functions [2] in the form

u(x) = N(x)a, (1.5)

where N is a matrix of standard nodal shape functions to interpolate the nodal degrees
of freedom. The introduction of Eq. (1.5) into Eq. (1.8) expresses the strain field as

ǫ(x) = B(x)a, (1.6)

where B = ∂TN is the familiar strain matrix.
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1.2 Governing equations

Consider a linear elastic body Ω. Assuming small strains, the linear momentum balance
equation and the kinematic equations result in

∂σ + X = 0, (1.7)

and

ǫ = ∂Tu. (1.8)

The vector X in Eq. (1.7) represents the vector of body forces. The traction and dis-
placement boundary conditions are given by

nσ = t on Γt, (1.9)

and

u = u on Γu. (1.10)

The system of governing equations is usually derived by invoking the principle of
virtual work. In particular, the principle of virtual displacements can be recovered by
forcing the equations of equilibrium, Eq. (1.7), to be satisfied in an average sense such
that

∫

Ω

δuT(∂σ + X) dΩ +

∫

Γt

δuT(−nσ + t) dΓ = 0, (1.11)

for all kinematically admissible δu. Next, applying Green’s theorem and taking into
account the fact that δu = 0 on Γu gives

∫

Ω

δǫTσ dΩ =

∫

Ω

δuTX dΩ +

∫

Γt

δuTt dΓ. (1.12)

In the context of quasistatic non-linear finite element analysis Eq. (1.12) is usually pre-
sented in its linearized form

∫

Ω

δ∆ǫT∆σ dΩ =

∫

Ω

δ∆uT∆X dΩ +

∫

Γt

δ∆uT∆t dΓ, (1.13)

where ∆ represents an increment of a given quantity over a certain increment of time ∆t.
To proceed, we introduce with the help of Eq. (1.5) an incremental form of constitutive
equations as

∆σ = D∆ǫ + ∆σin = DB∆a + ∆σin, (1.14)

where D is the (4 × 4) instantaneous (tangent) material stiffness matrix and ∆σin is the
increment of the initial stress vector. A contribution to ∆σin can be attributed to a
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number of distinct physical sources (thermal effects, pre-stress of structural elements such
as anchors, pore pressure, etc.). Finally, introducing Eq. (1.14) into Eq. (1.13) yields

δ∆aT

∫

Ω

B
T
DB∆a dΩ = δ∆aT

∫

Ω

N
T∆X dΩ (1.15)

− δ∆aT

∫

Ω

B
T∆σin dΩ + δ∆aT

∫

Γt

N
T∆t dΓ,

Noting that Eq. (1.15) must be satisfied for all kinematically admissible δ∆a we arrive
at the traditional form of the discrete system of linear equations

K∆u = ∆f , (1.16)

where K is the instantaneous (tangent) global stiffness matrix and ∆f represents the
generalized load vector. Individual symbols in Eq. (1.16) are provided by

K =

∫

Ω

B
T
DB dΩ, (1.17)

∆f =

∫

Ω

N
T∆X dΩ −

∫

Ω

B
T∆σin dΩ +

∫

Γt

N
T∆t dΓ. (1.18)

Following the standard finite element procedure, the stiffness matrix is obtained by
the assembly of contributions from individual elements. To that end, the domain Ω is
decomposed into Ne non-intersecting elements Ωe such that Ω = ∪Ne

e=1Ωe. Formally, the
global stiffness matrix and the global force vector become

K =
Ne

A
e=1

Ke, (1.19)

∆f =
Ne

A
e=1

∆f e. (1.20)

1.3 Finite elements used in GEO FEM program

The following section provides a brief overview of the individual finite elements used
in the GEO FEM finite element code. The available elements can be divided into two
groups: two-dimensional plane strain elements (3-node and 6-node triangular elements)
and special elements such as the 2-node rod element to model anchors, 2-node and 3-node
beam elements to model supporting walls, tunnel linings or foundations and the 4-node
and 6-node interface elements to model relative movement of the structure with respect to
the soil. All elements implemented in GEO FEM are constructed within the framework
of isoparametric formulation, which means that the same interpolation functions are used
to approximate geometry as well as the displacement field.

1.3.1 2-node rod element

The 2-node rod element with the linear interpolation of the displacement field is shown
in Fig. 1.3.
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Figure 1.3: 2-node rod element

Kinematics

The local displacement ul written in terms of the global degrees of freedom
ae = {u1, v1, u2, v2}T reads

ul = N1 (u1 cosα+ v1 sinα)︸ ︷︷ ︸
ul
1

+N2 (u2 cosα + v2 sinα)︸ ︷︷ ︸
ul
2

, (1.21)

where the isoparametric element shape functions N1, N2 are given by

N1 =
1

2
(1 − r),

N2 =
1

2
(1 + r).

Element stiffness matrix

Taking the derivative of Eq. (1.21) with respect to xl gives the axial strain in the form

ǫ = Ba, (1.22)

where the (1 × 4) matrix B attains the following form

B =
1

L
{− cosα,− sinα, cosα, sinα}. (1.23)

where L is the element length. To conclude the derivation of the element stiffness matrix
we introduce the constitutive law in the form

σ = Dǫ =
EA

L
ǫ, (1.24)

where D = EA/L represent the element axial stiffness; E,A are the Young modulus and
the element cross-sectional area respectively. Finally, making use of Eq. (1.17) on the
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Figure 1.4: 2-node and 3-node beam elements

element level provides the element stiffness matrix Ke as

Ke =
EA

L




cosα cosα cosα sinα − cosα cosα − cosα sinα
cosα sinα sinα sinα − cosα sinα − sinα sinα

− cosα cosα − cosα sinα cosα cosα cosα sinα
− cosα sinα − sinα sinα cosα sinα sinα sinα


 . (1.25)

1.3.2 2-node and 3-node beam elements

The 2-node and 3-node beam elements implemented in GEO FEM appear in Fig. 1.4.

Kinematics

In plane strain or axisymmetric analysis the beam elements can be introduced to represent,
e.g. a retaining wall or circular foundation slab. The generalized stress resultants shown
in Fig. 1.5

σ = {nx,mz, qy, nθ,mθ}T, (1.26)

are then assumed per 1m run. While the first three components appear only in the plane
strain analysis, the other two arise when axisymmetric conditions apply. In particular,
nx, ms, qy represent the membrane (normal) force, bending moment and shear force, where
as nθ and mθ are the circumferential (hoop) membrane force and circumferential (hoop)
bending moment. For an isotropic beam element the above stress resultants are related to
the generalized strains, that now involve extension and curvatures of the middle surface,
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Figure 1.5: Stress resultants

through the material stiffness matrix D in the form





nx

mz

qy
nθ

mθ





=
Eh

1 − ν2




1 0 0 ν 0

0
h2

12
0 0

νh2

12
0 0 kGh 0 0
ν 0 0 1 0

0
νh2

12
0 0

h2

12








du

dx

− dϕz

dx

−ϕz +
dv

dx
v sinα− u cosα

r

−θ cosα

r





, (1.27)

where h is the plate thickness and r is the circumferential radius. The material parame-
ters E, ν stand as usual for Young’s modulus and Poisson’s ratio. Finally, the unknown
functions in the displacement field u = {u, ϕ, v} T stand for the longitudinal displacement,
rotation about the z-axis and vertical displacement given in the local coordinate system,
respectively. For plane strain analysis the last two rows in Eq. 1.27 are not included.

The components of the displacement field follow from the standard finite element
approximation using the element shape functions and the nodal degrees of freedom

u = Na. (1.28)

2-node beam element: Detailed derivation of the finite element matrices for the 2-
node beam element implemented in GEO FEM is given in [2]. Here we present only the
most essential part. In particular, the matrix N in Eq. (1.28) assumes the form

N =




N1 0 0 N2 0 0
0 −N3 N4 0 −N5 N6

0 N7 −N8 0 N9 −N10



 , (1.29)
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Table 1.1: Shape functions for 2-node beam element

Node i Function Ni

1 1 − r

2 r

3
1

L(1 + 2κ)

[
6r − 6r2

]

4
1

1 + 2κ

[
(1 + 2κ) − 2(2 + κ)r + 3r2

]

5
1

L(1 + 3κ)

[
−6r + 6r2

]

6
1

1 + 2κ

[
−2(1 − κ)r + 3r2

]

7
1

1 + 2κ

[
(1 + 2κ) − 2κr − 3r2 + 2r3

]

8
L

1 + 2κ

[
−(1 + κ)r + (2 + κ)r2 − r3

]

9
1

1 + 2κ

[
2κr + 3r2 − 2r3

]

10
L

1 + 2κ

[
κr + (1 − κ)r2 − r3

]

where individual shape functions are listed in Table 1.1. The variable κ that appears in
individual terms of the shape functions is given by

κ =
6EIz
kGAL2

,

where k is the shear correction factor and L is the length of the beam. The finite element
representation of the strain field

ǫT =

{
du

dx
,− dϕz

dx
,−ϕz +

dv

dx
,
v sinα− u cosα

r
,−θ cosα

r

}
, (1.30)

calls for the introduction of the strain matrix B. Using Eq. (1.29) and taking into account
the transformation of coordinates from the local to the global coordinate system it is easy
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Table 1.2: Shape functions for 3-node beam element

Node i Regular function Ni Substitute function N i

1 1
2
r(r − 1) 1

2
(1

3
− r)

2 1
2
r(r − 1) 1

2
(1

3
+ r)

3 (1 − r2) 2
3

to see that

B =




CN ′
1 SN ′

1 0 CN ′
2 SN ′

2 0

−SN ′
3 CN ′

3 −N ′
4 −SN ′

5 CN ′
5 −N ′

6

−S(N3 +N ′
7) C(N3 +N ′

7) −N4 −N ′
8 −S(N5 +N ′

9) C(N5 +N ′
9) −N6 −N ′

10

N1

r
0 0

N2

r
0 0

0
CN3

r
−CN4

r

CN2

r
−CN1

r




,

(1.31)
where

C = cos(α),

S = sin(α), (1.32)

N ′
i =

1

J

dNi

dr
.

The angle α in the above equation is defined in Fig. 1.4 and the Jacobian J follows from
Eq. (1.39). The current radius is given by

r =
2∑

i=1

Nixi. (1.33)

3-node beam element: Assuming the standard isoparametric shape functions listed
in Table 1.2 to approximate the displacement field gives the matrix N in the form

N =




N1 0 0 N2 0 0 N3 0 0
0 N1 0 0 N2 0 0 N3 0
0 0 N1 0 0 N2 0 0 N3



 , (1.34)



10 CHAPTER 1. FINITE ELEMENT EQUATIONS

Next, recall the representation of the strain field (1.30) and use Eq. (1.34) to arrive at

B =




CN ′
1 SN ′

1 0 CN ′
2 SN ′

2 0 CN ′
3 SN ′

3 0

0 −N ′
1 0 0 −N ′

2 0 −N ′
3 0

−SN ′
1 CN ′

1 N1 −SN ′
2 CN ′

2 N2 −SN ′
3 CN ′

3 N3

N1

r
0 0

N 2

r
0 0

N 3

r
0 0

0 0 −CN 1

r
0 0 −CN 2

r
0 0 −CN 3

r




. (1.35)

The standard B matrix was again augmented to account for the transformation of coor-
dinates. Parameters C, S,N ′

i receive the same meaning as in Eq. (1.32) with the Jacobian
J found from Eq. (1.40). For the circumferential strain terms the current radius r now
becomes [29]

r =

3∑

i=1

N ixi. (1.36)

In addition, substitute shape functions N i were used to define the variation of ϕ in the

definition of shear strain −ϕz +
dv

dx
to avoid shear force locking. Note that the substi-

tute shape functions coincide with the regular shape functions at the reduced Gaussian
integration points. Details can be found in [6, 29].

Element stiffness matrix

Derivation of the stiffness matrix follows Eq. (1.17). The result is

• Plane strain analysis

Ke =
N∑

j=1

wjB
T(rj)DB(rj)J, (1.37)

• Axisymmetric analysis

Ke =
N∑

j=1

wjB
T(rj)DB(rj)J r, (1.38)

where the Jacobian J reads

J = L for 2 − node element, (1.39)

J =
L

2
for 3 − node element. (1.40)

Locations of integration points within parent elements are stored in Table 1.3.
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Table 1.3: Integration points for 2-node and 3-node beam elements

Integration 2-node beam 3-node beam

point coordinate r weight coordinate r weight

1 0.211324865 1.0 -0.774596669241483 5/9

2 0.788675131 1.0 0.0 8/9

3 0.774596669241483 5/9

1.3.3 Plane 3-node and 6-node triangular elements

Plane 3-node and 6-node isoparametric triangular elements are implemented in GEO
FEM. Geometry of both elements is evident from Fig. 1.6.

Kinematics

The displacement interpolation functions are listed in Table 1.4. The element degrees of
freedom are

a = {u1, v1, u2, v2, u3, v3} T 3 − node elem, (1.41)

a = {u1, v1, u2, v2, u3, v3, u4, v4, u5, v5, u6, v6} T 6 − node elem. (1.42)

The displacement field inside the element is uniquely described by the above nodal pa-
rameters

u =

n∑

i=1

Niui, v =

n∑

i=1

Nivi, (1.43)

where n is the number of element nodes.

Element stiffness matrix

The components of the strain tensor follow from Eq. (1.6). The element stiffness matrix is
then defined by Eq. (1.17). Here, the integral is again evaluated by Gaussian quadrature
so that

• Plane strain analysis

Ke =
N∑

j=1

wjB
T(rj , sj,

1

J
)DB(rj, sj,

1

J
)J(rj , sj), (1.44)
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Table 1.4: Interpolation functions for 3-node and 6-node triangular elements

Node Function Included only if node i

i Ni is defined

i = 4 i = 5 i = 6

1 1 − r − s −1

2
N4 −1

2
N6

2 r −1

2
N4 −1

2
N5

3 s −1

2
N5 −1

2
N6

4 4r(1 − r − s)

5 4rs

6 4s(1 − r − s)
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Table 1.5: Integration points for a 3-node triangular element

Integration Coordinate Coordinate Weight

point r s

1 1/3 1/3 1/2

Table 1.6: Integration points for a 6-node triangular element

Integration Coordinate Coordinate Weight

point r s

1 0.1012865073235 0.1012865073235 0.1259391805448

2 0.7974269853531 0.1012865073235 0.1259391805448

3 0.1012865073235 0.7974269853531 0.1259391805448

4 0.4701420641051 0.0597158717898 0.1323941527885

5 0.4701420641051 0.4701420641051 0.1323941527885

6 0.0597158717898 0.4701420641051 0.1323941527885

7 0.3333333333333 0.3333333333333 0.2250000000000



14 CHAPTER 1. FINITE ELEMENT EQUATIONS

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�
�

41

3 3

2 2
1

56

x, u

y, v

3 (0,1)

1(0,0) 2(1,0)4

56
integration

3 (0,1)

1(0,0) 2(1,0)

s

r

s

r
1

3
6

7

41 2

5

Global elements

Parent elements

points

Figure 1.6: 4-node and 6-node interface elements

• Axisymmetric analysis

Ke =
N∑

j=1

wjB
T(rj , sj,

1

J
)DB(rj, sj,

1

J
)J(rj , sj) r, (1.45)

where wi is the weight for a given integration point i, N is the number of integration
points and J is the Jacobian of the transformation given by

J(r, s) =
∂x

∂r

∂y

∂s
− ∂x

∂s

∂y

∂r
. (1.46)

The linear 3-node element is integrated at one integration point, while N = 7 is assumed
for the quadratic 6-node element, see Fig. 1.6. Locations of integration points within
parent elements are stored in Tables 1.5 and 1.6. Further details on the evaluation of the
element stiffness matrix can be found in [2].

Element load vector

In this section, we turn our attention to the evaluation of element load vector attributed
to the gravity loading, pore pressure loading and loading that arise during excavation.
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Gravity loading: The forces generated by the self weight of the soil follow from the first
term on the right hand side of Eq. (1.18) and are given by

f gr
e =

∫

Ve

N
TXγ

e dVe, (1.47)

where Xγ
e = {0, γe} T and γe is the element self-weight per unit volume. The integral in

Eq. (1.47) thus redistributes the net vertical force to all element nodes.

Pore pressure: To arrive at the element load vector due to the prescribed pore pressure
we first recall the concept of effective stresses. The total stress vector then assumes the
form

σ = Dǫ − 3mp, (1.48)

where p > 0 represents the prescribed liquid pore pressure in the fully saturated soil.
Matrix D now stands for the stiffness matrix of the porous skeleton and vector m is
introduced later in Section 2.3.1 Eq. (2.2). Also note that the matrix of the solid phase
of the porous skeleton is taken as rigid (undeformable). Eq. (1.14) now becomes

σ = BDa − Np, (1.49)

where vector p stores the nodal values of the prescribed pore pressure. Introducing
Eq. (1.49) into Eq. (1.15) then gives (recall the second term on the right hand side of
Eq. (1.18))

f pp
e = −

∫

Ve

B
T
Nep dVe. (1.50)

Excavation problem: When a portion of material is excavated (open excavation, tunneling)
forces must be applied along the excavated surface such that the remaining material
experiences the correct unloading effect and the new free surface is stress free [34, 4].
The excavation procedure is schematically displayed in Fig. 1.7. Suppose that prior to
excavation the material in the original body is loaded to attain the initial stresses σA0

in
zone A and σB0

in zone B, respectively. This initial stress state can be recovered as a
superposition of two loading stages. To that end, suppose that the material from zone A is
removed. To maintain the initial stress state σB0

developed in zone B the new free surface
must be loaded by forces FAB exerted by body A on to body B. Similarly, the forces FBA

having the same magnitude but opposite direction as forces FABmust be applied to body
A to comply with the equilibrium requirements. It now becomes evident that in order to
complete the excavation procedure the unwanted layer of forces FAB must be removed by
applying force FBA to body B thus arriving at the required stress free surface, Fig. 1.7.

In mathematical terms the excavation forces FBA follow from the principal of virtual
work written as ∫

ΩA

δǫTσA0
dΩ =

∫

ΩA

δuTXγ dΩ +

∫

ΓA

δuTt dΓ. (1.51)

After discretization Eq. (1.51) becomes

NeA

A
e=1

(
δae

T

∫

Ve

B
TσA0e

dVe − δae
T

∫

Ve

N
TXγ

e dVe

)
= δaAB

TF BA. (1.52)
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X γ
A

B

t
FBA

ABF

σB

σA 0

0

FBA

σBσ   + B 0

Figure 1.7: Excavation process and excavation forces

The final step requires relating the element nodal degrees of freedom to the degrees of
freedom associated with the nodes on the new free surface. This can be done with the
help of the localization matrix L such that

ae = LeaBA. (1.53)

Substituting Eq. (1.53) into Eq. (1.52) finally gives the vector of excavation forces in the
form

F BA =
NeA

A
e=1

(∫

Ve

Le
T
B

TσA0e
dVe −

∫

Ve

Le
T
N

TXγ
e dVe

)
. (1.54)

The localization procedure as shown in Fig. 1.8 essentially corresponds to the selection
of elements attached to the excavation surface. Thus the remaining elements present in
body A do not have to be taken into account when computing the excavation forces F BA

in Eq. (1.54).

The theoretical grounds set in the above paragraphs are demonstrated on a simple
problem of open excavation. Figs. 1.9-1.11 illustrate a sequence of computational tasks
presented in Fig. 1.7. The initial state prior to excavation is represented by Fig. 1.9
showing a variation of the horizontal stress due to pure gravity loading. Fig. 1.10 then
corresponds to the state found in body B on Fig. 1.7 after removing the soil from open cut
but keeping the original stresses by applying forces FAB along the new free boundaries.
Finally, Fig. 1.11 displays the final deformation and stress state after removing the un-
wanted forces FAB with the help if forces FBA that have the same magnitude but opposite
direction, see Fig. 1.7 showing body B after completing the excavation sequence.
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Figure 1.8: Localization

Table 1.7: Interpolation functions for 4-node and 6-node interface elements

Node Function Included only if

i Ni node 3 is defined

1
1

2
(1 − r) −1

2
N3

2
1

2
(1 + r) −1

2
N3

3 (1 − r2)

1.3.4 4-node and 6-node interface elements

This section presents the derivation of the element stiffness matrix for the 4-node and 6-
node interface elements that are compatible with 3-node and 6-node triangular elements,
respectively, also implemented within the GEO FEM finite element code. Both elements
are displayed in Fig. 1.12.

Kinematics

In the finite element framework the global displacements are approximated using the stan-
dard element shape functions listed in Table 1.7. Referring to Fig 1.12 the displacement
field for the 4-node interface element receives the form
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Figure 1.9: Excavation procedure – initial state

Figure 1.10: Excavation procedure – intermediate state

Figure 1.11: Excavation procedure – final state
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Figure 1.12: 4-node and 6-node interface elements

utop = N1u3 +N2u4, (1.55)

ubot = N1u1 +N2u2,

vtop = N1v3 +N2v4,

vbot = N1v1 +N2v2,

In the compact form the global nodal degrees of freedom ui, vi are

ag = {u1, v1, u2, v2, u3, v3, u4, v4} T. (1.56)

Similarly for the 6-node interface element we get

utop = N1u4 +N2u5 +N3u6, (1.57)

ubot = N1u1 +N2u2 +N3u3,

vtop = N1v4 +N2v5 +N3v6,

vbot = N1v1 +N2v2 +N3v3,

and
ag = {u1, v1, u2, v2, u3, v3, u4, v4, u5, v5, u6, v6} T. (1.58)

Element stiffness matrix

The stress-displacement relationship of the interface model assumes the form

{
τ
σ

}
= D

{
[[u]]l
[[v]]l

}
, (1.59)

where [[u]]l and [[v]]l represent the relative displacements of the top and bottom of the
interface element in the local coordinate system, Fig. 1.12. For isotropic linear elastic
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behavior the interface material stiffness matrix D takes the form

D =

[
Ks 0
0 Kn

]
, (1.60)

where Ks and Kn are the elastic shear and normal stiffnesses, respectively. They can be
related to the interface shear and Young’s moduli Gint, Eint as

Ks =
Gint

t
,

Kn =
Eint

t
,

where t represents the interface stiffness. It should be noted here that setting the inter-
face stiffnesses Ks, Kn to low values may lead to excessively large elastic displacements.
However, if the elastic parameters are too large (attempt to model a perfect bond), then
the numerical ill-conditioning may occur. This is usually manifested by the oscillation
of interface stresses. It has been argued that such unwanted oscillatory behavior can be
reduced by using the Newton-Cotes integration scheme (integration points coincide with
the element nodes) when computing the element stiffness matrix [8, 13]. This integration
scheme is employed in GEO FEM. On the contrary, the results presented in [7] suggest
that the use of the Newton-Cotes integration scheme has no benefit over the Gaussian
quadrature.

The global degrees of freedom in Eqs. (1.56) and (1.58) are related to local displace-
ments in the form {

[[u]]l
[[v]]l

}
= Bag, (1.61)

where the matrix B assumes the form

B = [−TB1 −TB2 TB1 TB2] 4 − node elem, (1.62)

B = [−TB1 −TB2 − TB3 TB1 TB2 TB3] 6 − node elem. (1.63)

and

T =

[
cosα sinα
− sinα cosα

]
Bi =

[
Ni 0
0 Ni

]
. (1.64)

The element stiffness matrix Ke then follows from

Ke =
L

2

∫ 1

−1

B
T
DB dr, (1.65)

where L is the element length.

Element load vector

We limit our attention to the element load due to pore pressure. Assuming drained
boundary conditions and using the concept of effective stresses gives the vector of total
stresses in the form {

τ
σ

}
=
[

D
] { [[u]]l

[[v]]l

}
−
{

0
1

}
p, (1.66)
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where the average value of pore pressure p is given by

p =
1

2
[(p1 + p3)N1 + (p2 + p4)N2] 4 − node elem, (1.67)

p =
1

2
[(p1 + p4)N1 + (p2 + p5)N2 + (p3 + p6)N3] 6 − node elem. (1.68)

Finally, recall the second term in Eq. (1.18) to get the element load vector f e due to
initial pore pressure as

f e =
L

2

∫ 1

−1

B
T

{
0
1

}
p d r. (1.69)



Chapter 2

Basic constitutive models for soils

2.1 Elastic constitutive model for soils

Although not realistic for soils, the program makes it possible to analyze a purely elastic
isotropic material. A typical stress-strain curve for a linear elastic material is plotted in
Fig. 2.1. Note that such a model assumes that the loading and unloading branch coincide.

1
E = Eur

σ

ε

loading/unloading

Figure 2.1: Linear elastic constitutive model for soil

The assumption of isotropy (all material constants are independent of the orientation
of the coordinate axes) is common for all material models implemented in GEO FEM. In
such a case there are only two independent material constants necessary to represent the
material behavior, e.g., the Young modulus E and Poisson ratio ν. Limiting our attention
to the plane-strain conditions, the incremental constitutive equation for a linear elastic
isotropic material reads






σxx

σyy

τxy

σzz





=

E

(1 + ν)(1 − 2ν)




1 − ν ν 0 ν
ν 1 − ν 0 ν

0 0
1 − 2ν

2
0

ν ν 0 1 − ν









εxx

εyy

γxy

εzz





. (2.1)

22



2.2. MODIFIED ELASTIC CONSTITUTIVE MODEL FOR SOILS 23

2.2 Modified elastic constitutive model for soils

A slightly more realistic prediction of the material behavior can be achieved when assum-
ing a different material response in loading and unloading. Such an approach calls for
a third independent material parameter governing the unloading-reloading branch of the
stress strain curve as shown in Fig. 2.2. Experimental evidence suggests to set the value
of the unloading-reloading Young’s modulus Eur to approximately three times the value
of E. This is the default setting in GEO FEM.

Eur

1
E

ε

σ

1

sec

ε
ε

el

unloading/reloading

primary loading

Figure 2.2: Modified linear elastic constitutive model for soil

2.3 Basic elasto-plastic constitutive models for soils

One of the key topics in the geomechanical engineering is an assessment of stability and
ultimate load bearing capacity of soils. Although a number of simple approaches based
on limit equilibrium are available for the solution of this problem such as the Petterson,
Bishop or Sarma methods, there is an increasing need for more accurate and reliable
approaches that take the actual behavior of soils into account, especially in applications
involving soils that show softening behavior, e.g., dense sands or overconsolidated clays,
see Fig. 2.3.

The purpose of this chapter is to review several constitutive models commonly known
to geotechnical engineers. The chapter starts with the classical von Mises model [2, 29]
often used when assuming the total stress approach. Although this model is not currently
implemented within the GEO FEM software, we take advantage of its simplicity and use
it as a stepping stone for more complex constitutive models such as the Drucker-Prager
and the modified Mohr-Coulomb models discussed next. Note that unlike the von Mises
constitutive model, these models draw on the use of effective parameters.
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1
ET

1

E

Eur

1

σ

ε

loading

unloading

Elastic Hardening Softening

Figure 2.3: Typical soil behavior involving hardening and softening

2.3.1 Invariants

Before proceeding with the actual formulation of individual constitutive models we first
define the following matrices and vectors extensively used in this chapter:

m = {1/3, 1/3, 0, 1/3}T ,

P =




2/3 −1/3 0 −1/3

−1/3 2/3 0 −1/3

0 0 2 0

−1/3 −1/3 0 2/3




, Q =




1 0 0 0

0 1 0 0

0 0 1/2 0

0 0 0 1




, (2.2)

with the following useful connections

mT
Q m = mT m =

1

3
, PQP = P, PQm = 0. (2.3)

In addition, standard engineering representation of stress and strain is used throughout
the text. Assuming the Cartesian coordinate system with axes x, y and z, Fig. 1.1, and
the plain strain state of stress, the symmetric second order Cauchy stress tensor σ is
then represented as (4 × 4) vector (in the case of axi-symmetric analysis the z-direction
is replaced by the circumferential θ-direction with the corresponding notation introduced
in Chapter 1)

σ = {σxx, σyy, σxy, σzz}T . (2.4)

Similarly we write the symmetric second-order tensor of small strains ε in the form

ε = {εxx, εyy, γxy, εzz}T . (2.5)
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The deviatoric counterparts of stress σ and strain ε are then given by

s = PQσ, e = PQε. (2.6)

The state of stress at a given material point provided by Eq. (2.4) can be also written
in terms of three basic invariants. Assuming standard elasticity notation (pressure is
negative) these invariants can be written with the help of Eq. (2.2) as

σm = mTσ, (2.7)

J =

√
1

2
σTPσ, (2.8)

θ = −1

3
arcsin

(
3
√

3

2

I3s

J3

)
, (2.9)

where σm is the effective mean stress, J is defined as a square root of the second invariant of
the deviatoric stress and θ is Lode’s angle; I3s in Eq. (2.9) stands for the third invariant of
the deviatoric stress. Assuming plane strain conditions the quantity I3s takes the following
form

I3s = sxxsyyszz − szzsxysxy, (2.10)

where sij are the components of the deviatoric stress tensor given by Eq. (2.6). It becomes
also advantageous, later in this chapter, to define certain equivalent measures of strain
vectors ε and e as

εeq =

√
2

3
εTQε, (2.11)

Ed =
√

2εTQPQε. (2.12)

2.3.2 Yield surface

It is the well known fact that the plastic behavior of solids in general is characterized
by a non-unique stress-strain relationship. Evidence of such a behavior is the presence
of irrecoverable (plastic) strains (ε) upon unloading. Fig. 2.4 provides an illustrative
example of uniaxial behavior of a material loaded beyond the elastic limit. The plastic
strains attributed to yielding, however, can occur only if the stresses σ satisfy a certain
yield criterion

F (σ,κ) = 0, (2.13)

where the components of vector κ = {κ1, κ2 . . .}T are called the hardening/softening pa-
rameters. If the material exhibits hardening/softening, the surface described by Eq. (2.13)
expands/contracts depending on the loading history and the hardening/softening param-
eters κ = κ(t). The condition F (σ,κ) < 0 then corresponds either to initial elastic
loading, or elastic unloading from a previously reached plastic state. In a time interval
during which the material remains in a plastic state, the yield condition Eq. (2.13) is sat-
isfied (recall that F (σ,κ) > 0 is not admissible). After differentiating the yield condition
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εpl

Loading

Unloading

σ

ε

Figure 2.4: Uniaxial plastic behavior

we arrive at the so called consistency condition [2]

dF =
(∂F
∂σ

)T

dσ +
(∂F
∂κ

)T

dκ = 0, (valid for plastic yielding) (2.14)

where, under plane strain state of stress,

∂F

∂σ
=

{
∂F

∂σxx
,
∂F

∂σyy
,
∂F

∂σxy
,
∂F

∂σzz

}T

, (2.15)

∂F

∂κ
=

{
∂F

∂κ1

,
∂F

∂κ2

, . . . ,
∂F

∂κk

}T

.

Apart from the yield condition, Eq. (2.13), the description of the plastic deformation
requires a certain assumption about the direction of the plastic flow. Such an hypothesis
is called the flow rule. It is postulated that the plastic flow will occur in the direction
normal to a plastic potential surface

G = G(σ,κ). (2.16)

The plastic strain increment can be then defined as

dεpl = dλ
∂G

∂σ
, (2.17)

where dλ is a proportionality constant, as yet undetermined. Since dλ determines the
magnitude of the plastic flow it is clear that dλ > 0 for plastic yielding and is equal to
zero when the stress point is found inside the yield surface. The special case of G = F is
known as associated plasticity and the flow rule Eq. (2.16) is termed the normality rule.
In the general case, however, when G 6= F the plasticity is non-associated. The parameter
dλ can be eliminated using the consistency condition Eq. (2.14) written in Melan’s form
as

dF =
(∂F
∂σ

)T

dσ −Hdλ = 0, (valid for plastic yielding) (2.18)
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where

H = −
(∂F
∂κ

)T∂κ

∂λ
, (2.19)

is the modulus of plastic hardening/softening. To account also for the case when the
material is either loaded in the elastic regime or elastically unloaded preceeded by plastic
yielding the consistency condition may receive a more general form

dλ dF = 0. (2.20)

Eq. (2.20) is equivalent to the loading-unloading conditions

dλ ≥ 0, F (σ,κ) ≤ 0, dλF (σ,κ) = 0. (2.21)

These conditions are often referred to as the Karush-Kuhn-Tucker conditions [17](Chapter
15.2.2). Clearly, for elastic unloading dF < 0 and for plastic loading dλ > 0 and thus
F (σ,κ) = 0 (stress must remain on the yield surface) and dF = 0 from consistency
condition.

2.3.3 Elasto-plastic stiffness matrix

This section completes the summary of the general theoretical grounds needed for the
description of plastic behavior of solids by formulating the elasto-plastic material stiffness
matrix. Two approaches are examined to arrive at the desired result. The first approach
draws on the standard incremental form of constitutive equations combined with the
consistency condition given by Eq. (2.14), while the second approach confirms with the
actual algorithmic procedure for the stress update. The interested reader may also consult
an excellent paper on this subject by Simo and Taylor [33].

Standard tangent stiffness matrix

Assuming additive decomposition of small strains the total strain vector admits the fol-
lowing representation

dε = dεel + dεpl. (2.22)

Relating the increment of stress dσ during plastic loading to the elastic part of the total
strain dεel we get

dσ = D
el( dε − dεpl). (2.23)

where D
el represents, keeping up with the plane strain conditions, the (4 × 4) elastic

stiffness matrix. Substituting for dεpl from Eq. (2.17) into Eq. (2.23) gives

dσ = D
el

(
dε − dλ

∂G

∂σ

)
. (2.24)

After substituting for dσ from Eq. (2.24) into the consistency condition Eq. (2.18) we get

(
∂F

∂σ

)T

D
el

(
dε − dλ

∂G

∂σ

)
−Hdλ = 0. (2.25)
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Note that for elastic unloading ( dλ = 0, dF < 0) the above equation reduces to

(
∂F

∂σ

)T

D
eldε < 0. (2.26)

Solving for dλ from Eq. (2.25) yields for plastic yielding

dλ =

(
∂F

∂σ

)T

D
el dε

H +

(
∂F

∂σ

)T

D
el

(
∂G

∂σ

) ≥ 0. (2.27)

Suppose for simplicity that F = G (associated flow rule) and H = 0 (perfect plasticity).

Since in such a case

(
∂F

∂σ

)T

D
el

(
∂F

∂σ

)
> 0 (Del is positive definite), Eq. (2.27) implies

(
∂F

∂σ

)T

D
eldε ≥ 0. (2.28)

In view of Eqs. (2.26) and (2.28) we may now postulate the following loading criterion:

(
∂F

∂σ

)T

D
eldε





> 0 plastic loading ( dλ > 0),

= 0 neutral loading ( dλ = 0),

< 0 elastic unloading ( dλ = 0).

(2.29)

When deriving Eq. (2.28) we essentially assumed that the denominator is positive. How-
ever, if it is negative then conditions (2.26) and (2.27), if satisfied, suggest two different so-
lutions for the same strain increment dε. It can be concluded that the plastic multiplier is
uniquely determined from the consistency condition (2.25) provided, see also [17](Chapter
20) for more details,

H +

(
∂F

∂σ

)T

D
el

(
∂G

∂σ

)
≥ 0. (2.30)

To complete the derivation of the tangent stiffness matrix we substitute for dλ from
Eq. (2.27) back into Eq. (2.23) to get

dσ = D
el


I −

(
∂G

∂σ

)(
∂F

∂σ

)T

D
el

H +

(
∂F

∂σ

)T

D
el

(
∂G

∂σ

)


 dε. (2.31)

Eq. (2.31) represents an explicit expansion which determines the stress change in terms of
strain change with the instantaneous (elasto-plastic) tangent stiffness matrix D

ep written
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as

dσ = D
ep dε (2.32)

D
ep = D

el −
D

el

(
∂G

∂σ

) (
∂F

∂σ

)T

D
el

H +

(
∂F

∂σ

)T

D
el

(
∂G

∂σ

) = D
el − D

elngn
TD

el

H + nTD
elng

, (2.33)

where

n =
∂F

∂σ
, ng =

∂G

∂σ
, (2.34)

represent normals to the yield and potential surfaces in the stress space, respectively.

Algorithmic tangent stiffness matrix

It has been confirmed that the use of the elasto-plastic stiffness matrix given by Eq. (2.33)
spoils the quadratic convergence of the Newton-Raphson iterative solver. Simo and Tay-
lor [33] showed that in order to cure this, the elasto-plastic stiffness matrix must be
consistent with the algorithmic procedure used for the stress update. Thus, following
the standard predictor-corrector stress update procedure [33, 27, 37, 38, to cite a few] we
write the incremental form of the constitutive equation follows

σi+1 − σi = D
el(εi+1 − εi) −D

el(λi+1 − λi)ni+1
g , (2.35)

Taking the time derivative of Eq. (2.35) yields

dσ = D
el dε − dλDelng − ∆λDel dng, (2.36)

with

dng =
∂ng

∂σ
dσ. (2.37)

Introducing Eq. (2.37) into Eq. (2.36) after some manipulation gives

(Del)−1 dσ = dε − dλng − ∆λ
∂ng

∂σ
dσ, (2.38)

[
(Del)−1 + ∆λ

∂ng

∂σ

]
dσ = dε − dλng, (2.39)

dσ =

[
(Del)−1 + ∆λ

∂ng

∂σ

]−1

︸ ︷︷ ︸
D

( dε − dλng), (2.40)

D =

[
(Del)−1 + ∆λ

∂ng

∂σ

]−1

. (2.41)
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Writing the consistency condition Eq. (2.14) in the rate form

dF =
(∂F
∂σ

)T

dσ −H dλ = 0, (2.42)

provides

dλ =
1

H

(∂F
∂σ

)T

︸ ︷︷ ︸
nT

dσ =
nT dσ

H
, (2.43)

With the help of Eq. (2.43) Eq. (2.40) can be inverted to get

dε =

[
D−1 +

ngn
T

H

]
dσ. (2.44)

Finally, applying the Sherman-Morrison formula written in its general form as

B = I + rNT, (2.45)

B
−1 = I − rNT

1 + rTN
, (2.46)

to Eq. (2.44) results in the desired algorithmic tangent stiffness matrix

dσ =

[
D − Dngn

TD
H + nTDng

]

︸ ︷︷ ︸
Dcons

dε, (2.47)

Dcons = D − Dngn
TD

H + nTDng
. (2.48)

Note that using the above form of the instantaneous elasto-plastic stiffness matrix (Dcons)
instead of D

ep in the iterative solver maintains the theoretically proved quadratic conver-
gence of the Newton-Raphson method.

2.3.4 Drucker-Prager model

If the results of laboratory tests are plotted in terms effective rather than total stress the
failure criterion becomes dependent on the hydrostatic or mean stress. Such dependence
can be accounted for by using the Drucker-Prager plasticity model.

Yield surface

The Drucker-Prager model can be thought of as an extension of the von Mises model
by including the first invariant of the stress tensor (mean stress) into the formulation of
the yield surface. The Drucker-Prager yield surface then plots as a cylindrical cone in
the principal stress space. Corresponding projections into deviatoric and meridian planes
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Figure 2.5: Projections of the yield function and plastic potential functions of Drucker-
Prager model into meridian plane.
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Figure 2.6: Drucker-Prager and Mohr Coulomb yield surfaces in the deviatoric plane.
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appear in Figs 2.5 and 2.6. Following [29] the Drucker-Prager yield criterion then assumes
the form

F (σ, κ) = J + (σm − c(κ1) cotϕ(κ2))MJP (ϕ(κ2)) = 0, (2.49)

where J and σm are given by Eqs. (2.8) and (2.7), respectively. Recall that vector κ =
(κ1, κ2)

T

stores the hardening/softening parameters.
As with the von Mises and Tresca models the radius of the Drucker-Prager circle in

the deviatoric plane can be defined by matching the Drucker-Prager and Mohr-Coulomb
models at a particular value of Lode’s angle θ. This is illustrated in Fig 2.6 where the
irregular hexagon of the Mohr-Coulomb surfaces is compared with the circular shape of
the Drucker-Prager surface in the deviatoric plane. Three alternative Drucker-Prager
circles are shown. Assuming that both surfaces match at θ = 300 (triaxial compression)
we arrive at the Drucker-Prager circle circumscribed to the Mohr-Coulomb function (green
circle). The corresponding value of MJP reads

Mθ=+30◦

JP =
2
√

3 sinϕ

3 − sinϕ
. (2.50)

If we desire that the Drucker-Prager circle touches the Mohr-Coulomb hexagon at θ =
−300 (triaxial extension - blue circle) we set the value of MJP to

Mθ=−30◦

JP =
2
√

3 sinϕ

3 + sinϕ
. (2.51)

Finally, the inscribed circle is found, see [29] for more details, when setting

M ins
JP =

sinϕ

cos θins − sin θins sinϕ√
3

, (2.52)

with

θins = arctan
sinϕ√

3
. (2.53)

The model is completed by adopting a plastic potential function of the form

G = J + [σm − app]M
PP
JP = 0, (2.54)

where app follows from Fig. 2.5 when matching F and G for the current value of stress σ.
This gives

app = −σm + (σc
m − c cotϕ)

MJP

MPP
JP

.

After substituting app into Eq. (2.16) the plastic potential can be written in the form

G = J +

[
σm − σc

m + (σc
m − c cotϕ)

MJP

MPP
JP

]
MPP

JP = 0, (2.55)
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Figure 2.7: Multi-linear hardening/softening law.
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where MPP
JP is the gradient of the plastic potential function in J −σm space (see Fig 2.5).

If MPP
JP = MJP the yield and plastic potential functions are the same and the model

becomes associated. MPP
JP can be related to the angle of dilation ψ, by substituting ψ for

ϕ in Eqs. (2.50)-(2.52). As with the von Mises plasticity model we now proceed with the
derivation of the hardening/softening modulus H . To that end, consider the multi-linear
form of the hardening/softening law for the cohesion c and the angle of internal friction
ϕ plotted in Fig. 2.7. In Fig. 2.7 cin, ϕin and cres, ϕres represent the initial and residual
values of c and ϕ, respectively. Although the components of vector κ may differ for each of
the two strength parameters, a single hardening parameter κ = κ1 = κ2 = Ed is assumed
in the present formulation. See also Fig. 2.7 suggesting a multi-linear variation of c, ϕ as
a function of deviatoric strain Ed. For further discussion, suppose that an nth interval in
Fig. 2.7 is active. The current strength parameters are then provided by

c = cn−1 + hn
c

(
Epl

d − (Epl
d )n−1

)
, (2.56)

ϕ = ϕn−1 + hn
ϕ

(
Epl

d − (Epl
d )n−1

)
, (2.57)

where the current hardening/softening moduli hn
c , h

n
ϕ follow from

hn
c =

cn − cn−1

(Epl
d )n − (Epl

d )n−1
, (2.58)

hn
ϕ =

ϕn − ϕn−1

(Epl
d )n − (Epl

d )n−1
. (2.59)

Referring to Fig. 2.7 and using Eq. (2.19) the hardening/softening modulus H assumes
the form

H = −∂F
∂c

dc

dEpl
d

dEpl
d

dλ
− ∂F

∂ϕ

dϕ

dEpl
d

dEpl
d

dλ
, (2.60)

where

∂F

∂ϕ
=

c

sin2 ϕ
MJP + (σm − c cotϕ)

dMJP

dϕ
, (2.61)

dF

dc
= − cotϕ MJP , (2.62)

dc

dκ
=

dc

dEpl
d

= hc, (2.63)

dϕ

dκ
=

dϕ

dEpl
d

= hϕ. (2.64)
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Derivatives of MJP with respect to ϕ for selected values of θ are

dM ins
JP

dϕ
=

3
√

3 cosϕ

(3 + sin2 ϕ)
3

2

, (2.65)

dMθ=−30◦

JP

dϕ
=

6
√

3 cosϕ

(1 − sinϕ)2
, (2.66)

dMθ=+30◦

JP

dϕ
=

6
√

3 cosϕ

(1 + sinϕ)2
. (2.67)

As in the previous section we accept the strain hardening approach and write

dεpl = dλ
∂G

∂σ
= dλ

1

2J
Pσ, (2.68)

dκ = dEpl
d =

√
2(εpl)T

QPQεpl = dλ⇒ dEpl
d

dλ
= 1. (2.69)

Finally, substitution of Eq. (2.61) - (2.69) back into Eq. (2.60) readily provides the
searched form of the hardening/softening modulus as

H = hc cotϕMJP − hϕ

[
c

sin2 ϕ
MJP + (σm − c cotϕ)

dMJP

dϕ

]
. (2.70)

Tangent stiffness matrix

The instantaneous tangent stiffness matrix follows from Eqs. (2.33) or (2.48). The partial
derivatives of the yield function and plastic potential function with respect to stress can
be found using the chain rule

n =
∂F

∂σ
=

∂F

∂σm

∂σm

∂σ
+
∂F

∂J

∂J

∂σ
, (2.71)

ng =
∂G

∂σ
=

∂G

∂σm

∂σm

∂σ
+
∂G

∂J

∂J

∂σ
. (2.72)

Recall that vectors n and ng represent normals to the yield and plastic potential functions
in the stress space, respectively. From Eq. (2.49) and (2.55) it is easy to show that

∂F

∂σm
= MJP ,

∂G

∂σm
= MPP

JP ,
∂F

∂J
=
∂G

∂J
= 1.

The values of ∂σm/∂σ and ∂J/∂σ are model independent and are given by

∂σm

∂σ
= m, (2.73)

∂J

∂σ
=

∂(1
2
σ

T

Pσ)
1

2

∂σ
=

1

2J
Pσ. (2.74)
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With the above expressions we finally get

∂F

∂σ
=

1

2J
Pσ +MJP m, (2.75)

∂G

∂σ
=

1

2J
Pσ +MPP

JP m. (2.76)

In addition, the second derivative of ng needed to determine the algorithmic tangent
matrix Dcons is provided by

∂ng

∂σ
=

(
3

2

)1/2
σTPσP − PσσTP

(σTPσ)3/2
. (2.77)

2.3.5 Modified Mohr-Coulomb model

As shown in the previous section the Drucker-Prager model plots as a circle in the devia-
toric plane, thus it is invariant with respect to Lode’s angle θ. Although the assumption
about a smoothed yield surface in the deviatoric plane has been confirmed experimen-
tally, the shape of the yield surface shows variation with respect to the third invariant.
The well known Mohr-Coulomb model is probably the most widely accepted model that
shows variation with θ in the deviatoric plane. Recall that in the principal stress space
the Mohr-Coulomb model plots as a hexagonal cone. However, as evident from Fig. 2.6,
it suffers from the same drawback as the Tresca model as it experiences corners. To
bring the modeling of plastic behavior of soils closer to conventional soil mechanics and
yet avoid corners of the yield and potential surfaces we introduce a “Modified” Mohr-
Coulomb model having a smoothed surface with a shape somewhere between that of the
hexagons and circles. Such a surface is also promoted in the literature as it agrees better
experimental results.

Yield surface

The yield function is constructed in such a way that it allows the present yield surface
and the one that corresponds to the Mohr-Coulomb law to be matched at all corners of
the yield surface in the deviatoric plane. Several examples are plotted in Fig. 2.8. The
yield function that corresponds to smooth surfaces plotted in Fig. 2.8 is defined as follows

F = J + (σm − c(κ1) cotϕ(κ2))g(θ, ϕ(κ2)) = 0, (2.78)

where the rounded triangular shape of the yield surface in the deviatoric plane is described
by (see also van Eekelen [9] for similar formulation)

g(θ) = X (Y1 + Y2 sin 3θ)−Z , (2.79)

where θ is Lode’s angle, Eq. (2.9). Parameters X, Y1, Y2, Z are selected such to give a
perfect fit to all corners of the Mohr-Coulomb hexagon. These are

X = 2Z+1
√

3 sinϕ, (2.80)

Y1 = (3 + sinϕ)
1

Z + (3 − sinϕ)
1

Z , (2.81)

Y2 = (3 − sinϕ)
1

Z − (3 + sinϕ)
1

Z . (2.82)
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Figure 2.8: Standard and Modified Mohr Coulomb yield surfaces in the deviatoric plane.

Some restrictions have to be applied on exponent Z to ensure convexity of the yield
surface.

The plastic potential of the Modified Mohr-Coulomb model is proposed the same as
for the Drucker-Prager model (see Fig. 2.9). It reads

G = J +

[
σm − σc

m + (σc
m − c cotϕ)

g(θ, ϕ)

MPP
JP

]
MPP

JP = 0, (2.83)

with MPP
JP being a constant. Therefore, the non-associated plasticity is assumed a priory.

The use of a circular shape for the plastic potential in the deviatoric plane is motivated
by experimental results presented by Kim&Lade [18] that suggest the plastic potential
is close to a Drucker-Prager contour, at least at low stress levels. The use of a shape
of plastic potential different from that of the yield surface is also advocated in [29] to
guarantee realistic values of Lode’s angle at failure θf for problems involving plane strain
deformation.

Tangent stiffness matrix

The instantaneous tangent stiffness matrix can again be obtained by Eqs. (2.33) or (2.48).
The required normals to the yield and potential surfaces now become

n =
∂F

∂σ
=

∂F

∂σm

∂σm

∂σ
+
∂F

∂J

∂J

∂σ
+
∂F

∂θ

∂θ

∂σ
, (2.84)

ng =
∂G

∂σ
=

∂G

∂σm

∂σm

∂σ
+
∂G

∂J

∂J

∂σ
. (2.85)
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Figure 2.9: Relationship between the yield function and plastic potential in the modified
Mohr-Coulomb model.

Referring to Section 2.3.4 we immediately see that

∂F

∂J

∂J

∂σ
=
∂G

∂J

∂J

∂σ
=

1

2J
Pσ,

∂F

∂σm

∂σm

∂σ
= g(θ)m,

∂G

∂σm

∂σm

∂σ
= MPP

JP m.

To complete the formulation it remains to determine values of ∂F/∂θ and ∂θ/∂σ in
Eq. (2.84). In doing so, we first differentiate the yield Eq. (2.78) with respect to θ to get

∂F

∂θ
= (σm − c cotϕ)

∂g(θ)

∂θ
,

∂g(θ)

∂θ
= −XZ(Y1 + Y2 sin 3θ)−Z−13Y2 cos 3θ. (2.86)

The term ∂θ/∂σ is again model independent and it receives the form

∂θ

∂σ
=

1

3 cos(3θ)

∂ sin(3θ)

∂σ
= −

√
3

2 cos 3θ

∂

∂σ

(
I3s

J3

)
,

=

√
3

2J3 cos 3θ

(
3I3s

J

∂J

∂σ
− ∂I3s

∂σ

)
. (2.87)

Assuming again the plane strain conditions the term ∂I3s/∂σ attains, with the help of
Eq. (2.10), the following form

∂I3s

∂σ
= ŝ =





1
3

[
σ2

xy + 2syyszz − sxx(syy + szz)
]

1
3

[
σ2

xy + 2sxxszz − syy(sxx + szz)
]

−2σxyszz

1
3

[
−2σ2

xy + 2sxxsyy − szz(sxx + syy)
]




.
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Employing the above expressions then allows the two vectors n,ng in Eqs. (2.84) - (2.85)
to be written as

n =
1

2J
Pσ + g(θ)m − (σm − c cotϕ)XZ(Y1 + Y2 sin 3θ)−Z−1Y2 ×

×3
√

3

2J3

(
3I3s

2J2
Pσ − ŝ

)
, (2.88)

ng =
1

2J
Pσ +MPP

JP m. (2.89)

Finally, the hardening/softening modulus follows from Eq. (2.60). Individual terms are

∂F

∂c
= −g(θ, ϕ)

tanϕ
, (2.90)

∂F

∂ϕ
=

c

sin2 ϕ
g(θ, ϕ) + (σm − c cotϕ)

∂g(θ, ϕ)

∂ϕ
. (2.91)

The last term in Eq. (2.91) is provided by

∂g(θ, ϕ)

∂ϕ
= (Y1 + Y2 sin 3θ)−Z dX

dϕ
− ZX(Y1 + Y2 sin 3θ)−Z−1

(
dY1

dϕ
+

dY1

dϕ
sin 3θ

)
,

where

dX

dϕ
= 2Z+1

√
3 cosϕ,

dY1

dϕ
=

cosϕ

Z

[
(3 + sinϕ)

1−Z
Z − (3 − sinϕ)

1−Z
Z

]
,

dY2

dϕ
= −cosϕ

Z

[
(3 − sinϕ)

1−Z
Z + (3 + sinϕ)

1−Z
Z

]
.

Combining Eqs. (2.60), (2.90)-(2.91) gives the desired hardening/softening modulus H in
the form

H = hc cotϕ g(θ, ϕ)− hϕ

[
c

sin2 ϕ
g(θ, ϕ) + (σm − c cotϕ)

∂g(θ, ϕ)

∂ϕ

]
. (2.92)

2.3.6 Implicit stress point algorithm for Drucker-Prager and

Modified Mohr-Coulomb models

The robust fully implicit return mapping in the form implemented in program GEO FEM
is presented here for the Drucker-Prager and modified Mohr-Coulomb constitutive models
to transfer the initial trial stresses from an illegal space back to the yield surface.
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Drucker-Prager

For the assumed J2 class of plasticity models it becomes convenient to split the general
stress and strain vectors into their volumetric and deviatoric parts. Accepting the plastic
flow rule provided by Eq. (2.17) then yields the respective increments of plastic strain in
the form

∆εpl
v = ∆λ

∂G

∂σm
= ∆λMPP (sinψ), (2.93)

∆epl = ∆λ
∂G

∂s
= ∆λ

Q
−1s

2J
, (2.94)

∆Epl
d = ∆λ

∂G

∂J
= ∆λ, (2.95)

which further allows writing the corresponding stresses at the end of the i+ 1 load incre-
ment as

σi+1
m = σtr

m −KMPP (sinψi+1)∆λ, (2.96)

si+1 = str − 2µ∆λ
si+1

2J i+1
=

str

1 +
µ∆λ

J i+1

= str

(
1 − µ∆λ

J tr

)
, (2.97)

J i+1 = J tr − µ∆λ, (2.98)

where µ represents the elastic shear modulus to avoid confusion with the definition of
the plastic potential function. The trial stresses are again found through a predictor step
assuming an initially elastic response, recall Eqs. (3.44) and (3.45).

A detailed description of the integration algorithm leading to “correct” stress field for
a given increment of the total strain ∆ε is outlined in Section 3.3. A rather concise form
of this algorithm will be reviewed henceforth giving only the essential steps pertinent to
the Drucker-Prager hardening/softening plasticity.

• Primary variables

{a}T = {∆λ, ci+1, sinϕi+1, sinψi+1}. (2.99)

• Residuals

{r}T = {F , C,Φ,Ψ}, (2.100)

where

F =

J i+1

︷ ︸︸ ︷(
J tr − µ∆λ

)
+[

σi+1
m︷ ︸︸ ︷(

σtr
m −KMPP (sinψi+1)∆λ

)
−ci+1 cotϕi+1]MJP (sinϕi+1),

C = ci+1 − ĉ = 0, (2.101)

Φ = sinϕi+1 − sin ϕ̂ = 0, (2.102)

Ψ = sinψi+1 − sin ψ̂ = 0. (2.103)
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Variables ĉ, ϕ̂ follow from Eqs. (2.56) and (2.57). The current value of the dilation

angle ψ̂ is found with the help of Rowe’s dilation theory in triaxial compression

sin ψ̂ =
sinϕi+1 − sinϕcv

1 − sinϕi+1 sinϕcv

. (2.104)

• Local Newton-Raphson method

{ai+1}k+1 = {ai+1}k − [H]−1 {r}k. (2.105)

• Jacobian matrix [H]

[H] = (2.106)


∂J

∂∆λ
+

∂F

∂σm

∂σm

∂∆λ

∂F

∂c

∂F

∂ sinϕ
+

∂F

∂MJP

∂MJP

∂ sinϕ

∂F

∂MPP

∂MPP

∂ sinψ

∂C

∂ĉ

∂ĉ

∂∆λ

∂C

∂c
0 0

∂Φ

∂ sin ϕ̂

∂ sin ϕ̂

∂∆λ
0

∂Φ

∂ sinϕ
0

0 0
∂Ψ

∂ sin ψ̂

∂sin ψ̂

∂ sinϕ

∂Ψ

∂ sinψ




.

• Initial conditions

{a0}T = {0, ci, sinϕi, sinψi}, (2.107)

{r0}T = {Jtr + (σtr
m − ci cotϕi)MJP(sinϕi), 0, 0, 0}. (2.108)

Apex problem

The above algorithm is applicable providing the trial stress when brought back to the
yield surface in the direction of the plastic strain rate vector (following inclination of the
boundary of Kε cone) is found on the boundary of cone Kσ representing the admissible
stress domain, Fig. 2.10(a). Such a condition is met for point 1 in Fig. 2.10(b) but violated
when referring to point 2. In the latter case the standard stress point return algorithm
locates the stress point on the boundary of dual cone (point 2” in Fig. 2.10(b)) thus
violating the yield condition. Such a situation can be referred to as an “apex problem”,
since in this particular case the stress update is simply a return mapping to the apex
(point 2’ in Fig. 2.10(b)) so that

σi+1 = 3ci+1 cotϕi+1m. (2.109)

Note that the non-associated flow rule restrics the plastic strain increment to belong to
the cone Kε, see also [12]. The admissibility condition for plastic strain rates is therefore
given by, recall Fig. 2.10(a),

ε̇v ≥MPP
JP Ė

pl
d . (2.110)
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In [12] the authors introduced a variational form of the flow rule to show through the
concept of bi-potentials that the vector of plastic strain increments for the apex problem
is indeed provided by

∆εpl = (Del)−1
(
σtr − 3ci+1 cotϕi+1m

)
, (2.111)

under the condition
1

G
MPP

JP J
tr − 1

K

(
σtr

m − cn cotϕn
)
< 0, (2.112)

where G,K are the elastic shear and bulk moduli. Note that Eq. (2.112) is essentially a
linearized form of Eq. (2.110).

Assuming hardening/softening material models it remains to update the harden-
ing/softening parameters c, ϕ. To that end, a fully implicit procedure similar to that
applied for the regular part of the yield surface is proposed. Before proceeding, we re-
call that the strain hardening hypotheses is adopted with a single hardening/softening
parameter κ such that

κ̇ = Ėpl
d . (2.113)

Rewriting Eq. (2.113) in the incremental form yields the following nonliner equation

E = ∆Epl
d −

∆Êpl
d︷ ︸︸ ︷[

2(∆εpl)T
QPQ∆εpl

]1/2
= 0, (2.114)

to be solved simultaneously with Eqs. 2.101 and (2.102). Note that the plastic strain
increment given by Eq. (2.111) is a function of the current strength parameters

∆εpl = ∆εpl(ci+1, ϕi+1).

In analogy with the return mapping proposed for the regular part of the yield surface
the present nonlinear system of equations is solved again with the help of the generalized
Newton-Raphson method, Eq. (2.105). To that end we define:

• Primary variables
{a}T = {∆E

pl

d , c
i+1, sinϕi+1}. (2.115)

• Residuals
{r}T = {E , C,Φ}. (2.116)

• Jacobian matrix [H]

[H] =




∂E

∂∆Epl
d

{
∂E

∂∆εpl

}T{
∂∆εpl

∂c

} {
∂E

∂∆εpl

}T{
∂∆εpl

∂ sinϕ

}

∂C

∂∆Epl
d

=
∂C

∂∆λ

∂C

∂c
0

∂Φ

∂∆Epl
d

=
∂Φ

∂∆λ
0

∂Φ

∂ sinϕ




. (2.117)
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Figure 2.10: Apex problem: (a) Admissible regions for stresses and plastic strain rates,
(b) Regular and singular return.
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• Initial conditions

{a0}T = {0, ci, sinϕi}, (2.118)

{r0}T = {
[
2(∆εpl)T(ci, ϕi)QPQ∆εpl(ci, ϕi)

]1/2
, 0, 0}. (2.119)

Modified Mohr-Coulomb

The integration algorithm for the Modified Mohr-Coulomb model follows the same steps
as outlined in the previous section. The only difference is related to the definition of
function F introduced in Eq. (2.78), so that only the derivatives filling the matrix [H] in
Eq. (2.107) need to be modified. In particular, the matrix element H11 receives in general
the form

H11 =
∂J

∂∆λ
+

∂F

∂σm

∂σm

∂∆λ
+
∂F

∂g

∂g

∂ sin 3θ

∂sin 3θ

∂∆λ
, (2.120)

where the term
∂sin 3θ

∂∆λ
is given by

∂sin 3θ

∂∆λ
=
∂sin 3θ

∂J

∂J

∂∆λ
+
∂sin 3θ

∂I3s

{
∂I3s

∂s

}T{
∂s

∂∆λ

}
. (2.121)

However, it can be shown that the last equation vanishes owing to the assumption of
a circular shape of plastic potential in the deviatoric plane so that no modification to
Eq. (2.107) is needed. The same applies to the apex problem rendering the indicator
condition the same as given by Eq. (2.112)

2.3.7 Mohr-Coulomb model

The Mohr-Coulomb failure criterion is perhaps the most well-known and understood soil
failure model in geotechnical engineering, being the main model taught in undergrad-
uate courses. The model is very simple and unites three elementary concepts. These
are the ideas of plane strain transformation equations (including the definition of prin-
cipal stresses), Mohr’s circle and Coulomb’s failure criterion. These three concepts are
developed below and then united to derive the Mohr-Coulomb failure criterion.

Plane strain, principal stresses and the transformation equations

Consider a small three dimensional square element that lies inside a stressed body. The
stresses acting on the element could be represented by those shown in Fig. 2.3.7. The
stresses comprise of ones normal to and ones parallel to the faces of the element. These are
known as normal and shear stresses respectively. The element has three spacial dimensions
with stresses acting on all six faces but under certain conditions one of the principal
stresses acting on two of the faces is much smaller than the others. This situation can arise
when a stress element is located on the surface of a stressed body such as a shaft placed
under torque loading or on the surface of a thin walled structure such as a balloon. In this
case the small principal stress can be neglected and hence the problem becomes one in
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Figure 2.11: Small element under plane strain conditions

2-D. Hence the element as shown in Fig. 2.3.7 can be considered to have stresses acting on
only the four surfaces shown. It should however be remembered that the element remains
a three dimensional entity but that the out-of-plane stresses are neglected, Fig. 2.3.7.
These types of conditions, already introduced in Section 1, are know as as plane strain
conditions and are used again as an assumption through out this section to simplify the
calculations. Thus, for the remainder of this discussion, the depth of the element (into
the page) is assumed to be unity. Now consider a plane through the element at an angle
of α with the vertical. This plane cuts the element into two segments, the left hand of
which is shown in Fig. 2.12. The stresses on the diagonal face are now considered to be
resolved into a normal stress σα and a shear stress τα as shown in Fig. 2.12. If the length
of the diagonal side is assumed to be A, then the lengths of the other two sides of the
element are A cosα and A sinα as shown. Note that because the depth of the element is
unity, these are also the areas of the element faces. By writing the basic force equilibrium
equations in the x and y directions and simultaneously solving for σα and τα one obtains
the transformation equations for plane stress

σα =
σxx + σyy

2
+
σxx − σyy

2
cos 2α + σxy sin 2α, (2.122)

τα = −σxx − σyy

2
sin 2α+ σxy cos 2α. (2.123)

Equations (2.122) and (2.123) allow the calculation of the stresses on the inclined diagonal
plane on the stress element. Now for any original stress state in the element in Fig. 2.3.7
two values of α can be chosen such that the shear stress τα is equal to zero. In this
orientation the normal stresses σα are at their respective maxima and minima. These
stresses are defined as the major σ1 and minor σ3 principal stresses respectively. An
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Figure 2.12: Sector of element

implicit characteristic of Eqs. (2.122) and (2.123) is that the principal stresses will always
lie orthogonally to each other. The principal stresses are therefore nothing more than the
maximum and minimum normal stresses inside a stressed body. The orientation of the
principal stresses can be related to the angle α by Eq. (2.122). If one differentiates this
equation with respect to α and sets it equal to zero in the normal fashion the orientation
of the principal stresses can easily be found.

Mohr’s circle for plane stress

In 1882 Otto Mohr devised a useful graphical technique for showing how the normal and
shear stresses vary in a body with respect to the angle α. The technique has become known
as Mohr’s circle and is an elementary concept that all mechanical and civil engineers should
understand. Using the trigonometric identity sin2 2α = cos2 2α = 1, one can combine the
transformation equations, Eqs. (2.122) and (2.123) to give

(σα − σm)2 + τ 2
α = R2, (2.124)

where

σm =
σxx + σyy

2
, (2.125)

R =

√(
σxx − σyy

2

)2

+ σxy
2. (2.126)

Equation (2.124) is the standard equation for a circle that can be plotted as shown in
Fig. 2.13. For any orientation of plane α in a stressed element the normal σα and the
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Figure 2.13: Mohr’s circle for plane stress

shear τα stress on the plane can be read from the Mohr’s circle. They could equally
be calculated using the transformation equations, Eqs. (2.122) and (2.123), but Mohr’s
circle allows an engineer to visualize the stress state in the body much more easily. The
diagram presents a lot of information. Firstly the major and minor principal stresses are
shown corresponding to the places where the shear stress is equal to zero. In the center
between these is the average normal stress σm. From Fig. 2.13 one can also see another
characteristic of the transformation equations. The maximum shear stress occurs at angle
45 degrees to the direction of the major principal stress. In this orientation the normal
stress is equal to the average normal stress.

Coulomb’s failure criterion

Coulomb proposed a model to describe the failure of soil that requires two material pa-
rameters; the angle of friction ϕ and the cohesion intercept c. Coulomb stated that the
shear stress in a soil at failure τf is proportionally related to the normal stress at failure
σnf . The cohesion intercept increases the shear strength of the soil by a fixed amount. If
there were no normal stresses in the soil then the shear strength would be equal to the
cohesion intercept. Numerically Coulomb’s failure criterion can be stated as

|τf | = c− σnf tanϕ. (2.127)

When plotted in τ -σn space, Eq. (2.127) defines a ‘failure envelope’ that is essentially a
yield function, see Fig 2.14. It has exactly the same properties and characteristics as a
yield function. Below the envelope stresses lie in the elastic regime. On the envelope
surface plastic failure occurs. A stress state in the soil above the yield surface is not
possible. Essentially the shear strength of a soil is related to the magnitude of the normal
force acting upon it. This explains why we place our foundations for buildings at a depth
below the ground. The deeper below the ground you move, the greater the normal stresses
in the soil due to the self weight of the soil above and the lateral forces from the soil beside
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Figure 2.14: Coulomb’s failure criterion

any arbitrary point. Therefore, since the normal stresses are larger the deeper one gets,
the shear strength of the soil is also larger. Hence, (neglecting water table effects etc), the
deeper foundations are placed, the greater the load they can support. This observation is
a direct result of Coulomb’s failure criterion.

The Mohr-Coulomb failure criterion

The Mohr-Coulomb failure criterion unites the ideas of transformation equations, Mohr’s
circles and Coulomb’s failure criterion. The necessary parameters that need to be obtained
to use Coulomb’s failure criterion are the angle of friction ϕ and the cohesion intercept
c. These are commonly found by the use of a triaxial compression test procedure. A
cylindrical sample of soil is placed under triaxial loading such that all three principal
stresses can be controlled. Two of the principal stresses are held constant whilst the third
(major) one is increased in a controlled gradual fashion. The loading increases until the
sample fails at which point the loads are recorded and the principal stresses calculated.
These can be plotted as a Mohr’s circle and, if required, the normal and shear stresses at
failure can be calculated for any orientation of plane in the test sample. The procedure
is now repeated but with a different cell pressure. The cell pressure places the loads on
the sample that cause the minor and intermediate principal stresses. Now the sample is
sheared again by increasing the major principal stress. Note that if a larger cell pressure
is used the value of the major principal stress at failure will also be larger as predicted by
Coulomb’s failure criterion. The results from each sample are plotted as Mohr’s circles
which typically take the form as in Fig. 2.15. A line is then drawn that is tangential to
all the Mohr’s circles. This is an experimental method for obtaining Coulomb’s failure
envelope. As all Mohr’s circles are touching the failure envelope they all have stress states
inside the soil which represent a failure condition. A very important point to note from
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Figure 2.15: a) Triaxial test setup, b) typical Mohr’s circles from triaxial tests

this formulation is that the failure shear stress does not correspond to the maximum
shear stress in the soil. The shear stress where the circle touches the failure envelope is
the failure shear stress. From the plotted results the angle of friction and the cohesion
intercept are easily obtained.

Once a triaxial test had been performed and the values of ϕ and c obtained, one
can use the Mohr-Coulomb failure criterion to estimate failure stress values in the soil
under any combinations of loading. The Mohr-Coulomb failure criterion is derived as
follows. Consider the results of a triaxial test being plotted as Mohr’s circles and the
failure envelope drawn as shown in Fig. 2.14. Using the elementary trigonometric identity
one can state that

τf =
1

2
(σ1 − σ3) cosϕ (2.128)

σnf =
1

2
(σ1 + σ3) +

1

2
(σ1 − σ3) sinϕ, (2.129)

which upon substitution into Eq. (2.127) gives the Mohr-Coulomb failure criterion, which
in the present model is adopted as the yield function

F (σ1, σ3) =
1

2
(σ1 − σ3) +

1

2
(σ1 + σ3) sinϕ− c cosϕ = 0. (2.130)

Plotting Mohr’s circles essentially gives us a graphical way to obtain the shear strength
parameters for the soil. They could equally be obtained from the numerical results of
two triaxial tests. The stress values for each test could be placed into Eq. (2.130) setting
up two simultaneous equations which would be solved for the shear strength parameters.
Alternatively if one knows the shear strength parameters and either the major or mi-
nor principal stress in the soil the other principal stress at the failure condition can be
calculated.

A limitation to using the Mohr-Coulomb failure criterion is that it is independent of the
intermediate principal stress. The same failure stress values are predicted for all values
of intermediate principal stress. In triaxial testing the intermediate principal stress is
always equal to the minor principal stress and the shear strength parameters are obtained
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Figure 2.16: Projection of Mohr-Coulomb’s failure criterion into deviatoric plane

for these values. In real world geotechnical problems the magnitudes of the intermediate
and the minor principal stresses may be different. Some experimental evidence has shown
that intermediate stress values can influence the failure condition for soils and this should
be appreciated every time an engineer uses any Mohr-Coulomb based models.

In principal stress space the yield function Eq. (2.130) plots as an irregular hexagon
in the deviatoric plane as shown in Fig. 2.16. It is evident that the six-fold symmetry
arises from possible permutations of principal stresses. It may therefore appear more
convenient, if confining our attention to plane σ1 > σ2 > σ3, to rewrite Eq. (2.130) in
terms of stress invariants σm, J, θ. Recall that in terms of stress invariants the principal
stresses read

σI = σm +
2√
3
J sin

[
θ − (I − 2)

2π

3

]
, I = 1, 2, 3. (2.131)

Note that the maximum shear stress τmax and the center of Mohr-Coulomb’s circle,
Fig. 2.14, are then provided by

1

2
(σ1 − σ3) = τmax = J cos θ, (2.132)

1

2
(σ1 + σ3) = σm − J√

3
sin θ. (2.133)

Introducing these equations into Eq. (2.130) then yields

F (J, σm, θ) = J(cos θ − 1√
3

sin θ sinϕ) + σm sinϕ− c cosϕ = 0. (2.134)

Next define

g(θ) =
sin θ

cos θ − 1√
3

sin θ sinϕ
, (2.135)
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to finally get upon introducing Eq. (2.135) into (2.134) and rearranging

F (Jσmθ) = J + (σm − c cotϕ)g(θ) = 0. (2.136)

Observe that Eq. (2.136) is formally identical with Eq. (2.78). Unfortunately, Eq. (2.136)
may no longer be applicable when when moving along the triaxial compression or triaxial
extension lines as shown in Fig. 2.16. In either case, at least two segments of the Mohr-
Coulomb hexagon then become active. Writing out the respective yield surfaces in terms
of principal stresses then becomes more convenient. In particular, the following three
segments of the yield surface might be needed when returning the stress point violating
the yield criterion back to the yield surface

F1(σ1, σ3, c, ϕ) =
1

2
(σ1 − σ3) +

1

2
(σ1 + σ3) sinϕ− c cosϕ = 0, σ1 ≥ σ2 ≥ σ3, (2.137)

F2(σ2, σ3, c, ϕ) =
1

2
(σ2 − σ3) +

1

2
(σ2 + σ3) sinϕ− c cosϕ = 0, σ2 ≥ σ1 ≥ σ3, (2.138)

F3(σ1, σ2, c, ϕ) =
1

2
(σ1 − σ2) +

1

2
(σ1 + σ2) sinϕ− c cosϕ = 0, σ1 ≥ σ2 ≥ σ2,(2.139)

with corresponding plastic potential surfaces

G1(σ1, σ3, ψ) =
1

2
(σ1 − σ3) +

1

2
(σ1 + σ3) sinψ, (2.140)

G2(σ2, σ3, ψ) =
1

2
(σ2 − σ3) +

1

2
(σ2 + σ3) sinψ, (2.141)

G3(σ1, σ2, ψ) =
1

2
(σ1 − σ2) +

1

2
(σ1 + σ2) sinψ, (2.142)

where ψ is the familiar dilation angle. Individual components of vectors normal to the
yield and plastic potential surfaces are then constant independent of stresses given by

• segment σ1 ≥ σ2 ≥ σ3 (F1, G1)

{n1} =

{
∂F1

∂σ

}
=

1

2
{1 + sinϕ, 0,−1 + sinϕ}T, (2.143)

{n1
g} =

{
∂G1

∂σ

}
=

1

2
{1 + sinψ, 0,−1 + sinψ}T. (2.144)

• segment σ2 ≥ σ1 ≥ σ3 (F2, G2)

{n2} =

{
∂F2

∂σ

}
=

1

2
{0, 1 + sinϕ,−1 + sinϕ}T, (2.145)

{n2
g} =

{
∂G2

∂σ

}
=

1

2
{0, 1 + sinψ,−1 + sinψ}T. (2.146)

• segment σ1 ≥ σ3 ≥ σ2 (F3, G3)

{n3} =

{
∂F3

∂σ

}
=

1

2
{1 + sinϕ,−1 + sinϕ, 0}T, (2.147)

{n3
g} =

{
∂G3

∂σ

}
=

1

2
{1 + sinψ,−1 + sinψ, 0}T. (2.148)
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Stress return algorithm and multi-surface plasticity

To simplify the matter we limit our attention to rigid plasticity with no hardening H = 0.
Such an assumption is also adopted in the program GEO FEM. The reader interested in
applications that include isotropic hardening/softening plasticity can consult the work by
Pankaj and Bičanič [28]

To proceed, consider first a “working sector” defined by a domain such that σ1 ≥ σ2 ≥
σ3, Fig. 2.16. A brief comment on the concept of the working sector is appropriate as
the implementation of the entire model is centered around the idea. The loading that
is applied to the soil is increased in increments from the initial conditions. An “elastic
prediction” is used to estimate the stress state in the material at the end of each loading
increment. However when the material is no longer elastic the actual magnitude of stress
in the material after this plastic flow would be lower than that forecast by the elastic
prediction. As a result the elastic prediction corresponds to a stress point that violates
the yield surface. The stress return scheme is then implemented and the stress state gets
returned back to the yield surface. The idea of the working sector originates from the
order in which the model calculates the relevant values. If plasticity is detected, the model
makes the elastic prediction in terms of the six components of the stress vector. After this
the model then calculates the magnitude and orientation of the principal stresses based
on the elastic prediction stress values. The elastic guess can then be plotted in principal
stress space. The model calculates the principal stresses such that σ1 ≥ σ2 ≥ σ3 and
because the conversion from six dimensional stress space to three dimensional principal
stress space is based on the elastic prediction stress values, the elastic prediction itself
must lie in the sector where σ1 ≥ σ2 ≥ σ3. This is defined as the working sector and
the elastic prediction stress will always lie in this domain due to the orientation of the
principal stress axes being based on the values of the elastic prediction stress.

Upon bringing the elastic guess back to the yield surface the following two scenarios as
plotted in Fig. 2.17 may occur. First refer to Figs. 2.17(a),(b) demonstrating a successful
return back to the “working sector” thus employing only a single yield function F1. The
return algorithm, however, failed in the example plotted in Fig. 2.17(c). Although bringing
the initial elastic guess back to the assumed active yield function F1, blue line, the resulting
stress state violates the yield function F2. It is interesting to note that if reordering the
principal stresses in the definition of Lode’s angle such that σ2 ≥ σ1 ≥ σ3, the algorithm
returns the stress back to function F2, green line. This particular situation suggests that
more than one yield function may be active at the same time.

To provide some explanation observe that where arbitrary two planes of the Mohr-
Coulomb hexagon intersect, the yield functions are not smoothly defined and a set of
edges are formed. If the stress state of the material is such that it lies on one of these
vertices, two yield functions are simultaneously active and have values equal to zero.
The problem arises of determining the direction and magnitude of the incremental plastic
strains in this situation. As both yield functions are simultaneously active, the incremental
plastic strains must be related to both the plastic potential functions of the violated yield
functions. Koiter [39] showed that for associated plasticity the incremental plastic strains
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Figure 2.17: a) Successful return to working sector ψ = ϕ, b) successful return to working
sector ψ = 0, c) failure to return to working sectorψ = 0, d) successful return to triaxial
compression cone ψ = 0

can be determined from

{∆εpl} =

m∑

j=1

∆λj

{
∂Fj

∂σ

}
. (2.149)

For m active yield functions Fj, λj are the plastic multipliers and {∆εp} and {σ} are the
incremental plastic strain and accumulated stress vectors respectively. Hence the total
incremental plastic strains are the summed contributions of the incremental plastic strains
related to each of the active yield surfaces.

Using the concept of multi-surface plasticity the plastic corrector algorithm then re-
turns the stress to the common intersection of the two active surfaces as plotted in
Fig. 2.17(d). It should be noted, however, that violating both yield functions at the
elastic predictor stage does not necessarily imply that both yield conditions are active as
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evident from Fig. 2.17(a). To determine whether a single or multiple yield surfaces are
active one may appreciate a set of singularity indicators developed, e.g. in [28]. Here,
a rather simplistic approach for identification of multi-surface plasticity return based on
the Lode angle stress invariant is employed. The Lode angle θ specifies the orientation of
any stress state on the deviatoric plane and can be stated in principal stresses as

θ = arctan

(
1√
3

(
2
(σ2 − σ3)

(σ1 − σ3)
− 1

))
. (2.150)

The procedure starts from performing a single surface plasticity stress return from the
elastic prediction stress. The Lode angle is then calculated for the returned stress. If the
value lies within the limits −30◦ ≤ θ ≤ 30◦, then the stress return is successful. This
situation is indicated in Fig. 2.17(b). If another stress return is considered, this time when
the element is placed under triaxial compression, Fig. 2.17(c), upon calculating the Lode
angle one will find that it lies outside the limits −30◦ ≤ θ ≤ 30◦. In this situation one can
see that one yield function remains violated after the stress return consequently indicating
that a multi-surface plasticity stress return is required from the elastic prediction stress.
This is then performed and the stress path is that indicated by Fig. 2.17(d) returning the
stress state to the apex of the two yield functions as shown.

A special situation arises, see also [28], when returning the stress to the apex of
the combined Mohr-Coulomb yield surface. In such a case all six planes are active.
Nevertheless, as discussed in [28], the set of six equations corresponding to six yield
functions Fig. 2.16 are linearly dependent and rank deficient by three. Therefore, only
three arbitrary yield functions, say F1, F2, F3 in Eqs. (2.137) - (2.139), are needed in
the plastic corrector stage. A word of caution is required, however, when applying the
procedure with non-associated plasticity with the dilation angle ψ equal to zero. The
resulting system of equations is then singular. Fortunately, to avoid such a situation we
may always set ψ = ϕ to perform the apex return.

The single yield surface and multi-surface plasticity concepts will be now discussed
separately.

Single yield surface plasticity Consider again the “working sector” σ1 ≥ σ2 ≥ σ3

with the corresponding yield and plastic potential functions F1 and G1 and normal vectors
{n1}, {n1

g} represented by Eqs. (2.137), (2.140), (2.143), (2.144). Assuming rigid plasticity,
H = 0, the consistency condition Eq. (2.14) becomes

∆F1 =

{
∂F1

∂σ

}T

{∆σ} = 0, (2.151)

{∆σ} =
[
Del
]
{∆ε} − ∆λ

[
Del
]
{n1

g}, (2.152)

where
[
Del
]

is the elastic 3×3 material stiffness matrix. Combining Eqs. (2.151) - (2.152)
yields the desired plastic multiplier in the form

∆λ =
{n1}T

[
Del
]
{∆ε}

{n1}T [Del] {n1
g}

=
{n1}T{∆σtr}

{n1}T [Del] {n1
g}
, (2.153)
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where {∆σtr} is the elastic trial stress increment. Note that condition (2.151) is identical
to

F n+1
1 (σn+1) = 0 =

=0︷︸︸︷
F n

1 +

{n}T{∆σtr}︷ ︸︸ ︷
1

2

(
∆σtr

1 − ∆σtr
3

)
+

1

2

(
∆σtr

1 + ∆σtr
3

)
sinϕ (2.154)

− ∆λ

[
1

2

(
D11n

1
g1 −D33n

1
g3

)
+

1

2

(
D11n

1
g1 +D33n

1
g3

)
sinϕ

]

︸ ︷︷ ︸
{n1}T[Del]{n1

g}

,

which allows for evaluation of ∆λ. In Eq. (2.155) F n+1
1 and F n

1 refer to the values of F1 at
the n-th and (n+ 1)-th load increments, respectively. Also note that a diagonal material
stiffness matrix was assumed for simplicity. Also note that

{n}T{∆σtr} = F n+1
1 (σtr),

offers the plastic strain increment ∆λ in the form

∆λ =
F n+1

1 (σtr)

{n1}T [Del] {n1
g}
. (2.155)

Therefore, either of the three Eqs. (2.153) - (2.155) can be used in the plastic corrector
stage. The algorithmic tangent stiffness matrix in principal stress space then directly
follows from Eq. (2.33) since matrices D

el and D, recall Eq. (2.48), are identical.

Multi-yield surface plasticity Although the procedure discussed henceforth can be
generalized to any number of active yield surface, the attention will be limited for the sake
of clarity to only two arbitrary yield functions simultaneously active with the notation
adopted from [29], Section 8.4.

As an example consider the case of triaxial compression already examined in Figs. 2.17.
One can then show how the plastic multipliers are calculated to enable the determination
of the incremental plastic strains. The derivation is very similar to obtaining the plastic
multipliers for single surface plasticity except that in this case, to obtain both plastic
multipliers, a pair of simultaneous equations need to be solved. Initially separate the
incremental strains into their elastic {∆εel} and plastic {∆εpl} components. The plastic
strains are then sub-divided into the contributions from each violated yield surface {∆εp1},
{∆εp2} such that the total incremental plastic strain {∆ε} is

{∆ε} = {∆εel} + {∆εp1} + {∆εp2}. (2.156)

The incremental stresses {∆σ} are again related to the incremental elastic strains by the
elastic constitutive matrix

[
Del
]

in the following way

{∆tr} =
[
Del
]
{∆εel}. (2.157)
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Combining Eqs. (2.156) and (2.157) gives

{∆σ} =
[
Del
]
({∆ε} − {∆εp1} − {∆εp2}). (2.158)

The flow rule is now written for each of the plastic potential functions

{∆εp1} = ∆λ1

{
∂G1

∂σ

}
, (2.159)

{∆εp2} = ∆λ2

{
∂G2

∂σ

}
. (2.160)

Upon substitution of Eqs. (2.159) and (2.160) into Eq. (2.158) gives

{∆σ} =
[
Del
]
{∆ε} − ∆λ1

[
Del
]{∂G1

∂σ

}
− ∆λ2

[
Del
]{∂G2

∂σ

}
. (2.161)

Before we proceed any further with the development of this derivation look at the

structure of Eq (2.161). If one were to multiply through by
[
Del
]−1

and then rearrange
you would obtain the following

{∆ε} − {∆εel} = {∆εpl} = ∆λ1

{
∂G1

∂σ

}
+ ∆λ2

{
∂G2

∂σ

}
. (2.162)

Observing Eq. (2.162) one can clearly see that Koiter’s generalization [39] can be extended
for non-associated plasticity behavior by replacing the yield functions with their respective
plastic potential functions. Thus Eq. (2.162) verifies

{∆εpl} =

m∑

j=1

∆λj

{
∂Gj

∂σ

}
=

m∑

j=1

∆λj{nj
g}. (2.163)

Hence one can use the flow rule to obtain the total incremental plastic strains when using
multi-surface plasticity if the contribution of each plastic potential function is summed.
One still needs to calculate the plastic multipliers. This is done by acknowledging that
when both yield surfaces are active, the values of both of them is zero, and the consistency
condition is satisfied. Using the chain rule on this observation gives (H = 0)

∆F1 =

{
∂F1

∂σ

}T

{∆σ} = {n1}T{∆σ} = 0, (2.164)

∆F2 =

{
∂F2

∂σ

}T

{∆σ} = {n2}T{∆σ} = 0. (2.165)

Substitution of Eq. (2.161) into (2.164) and (2.165) yields

∆F1 = {n1}T
[
Del
]
{∆ε} − ∆λ1{n1}T

[
Del
]
{h1

g} − ∆λ2{n1}T
[
Del
]
{n2

g} = 0, (2.166)

∆F2 = {n2}T
[
Del
]
{∆ε} − ∆λ1{n2}T

[
Del
]
{n1

g} − ∆λ2{n2}T
[
Del
]
{n2

g} = 0. (2.167)
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A set of simultaneous equations are now set in place and are solved for the plastic multi-
pliers. Equations (2.166) and (2.167) can now be written in a simplified form as

∆λ1L11 + ∆λ2L12 = T1, (2.168)

∆λ1L21 + ∆λ2L22 = T2, (2.169)

where

L11 = {n1}T
[
Del
]
{n1

g}, (2.170)

L22 = {n2}T
[
Del
]
{n2

g}, (2.171)

L12 = {n1}T
[
Del
]
{n2

g}, (2.172)

L21 = {n2}T
[
Del
]
{n1

g}, (2.173)

T1 = {n1}T
[
Del
]
{∆ε}, (2.174)

T2 = {n2}T
[
Del
]
{∆ε}. (2.175)

Thus the plastic multipliers are calculated as

∆λ1 = (L22T1 − L12T2) / (L11L22 − L12L21), (2.176)

∆λ2 = (L11T2 − L21T1) / (L11L22 − L12L21). (2.177)

These are then used in Eq. (2.162) or (2.163) to calculate the incremental plastic strains.
This process can be easily extended using the same concepts when one has more than
two surface multi-surface plasticity such as the apex problem or the Mohr-Coulomb yield
surface combined with a tension cut off problem. This concept is outlined in Section 2.3.8.

As for the tangent stiffness matric D
ep its derivation may proceed along the same lines

as discussed in Section 2.3.3. To that end we substitute from Eqs. (2.176) - (2.177) into
Eq. (2.161) to get after rearranging, see also [29],

[Dep] =
[
Del
]
−
[
Del
]

Ω

[
{n1

g}{b1}T + {n2
g}{b2}T

] [
Del
]
, (2.178)

Ω = L11L22 − L12L21,

{b1} = L22{n1} − L12{n2},
{b2} = L11{n2} − L21{n1}.

A similar procedure can be applied when more than two yield surfaces are active.
Recall, e.g. the apex problem, where all three surfaces F1, F2, F3 are simultaneous active.
In fact, all six surfaces shown in Fig. 2.16 are active, but only three are needed to bring
the stress to their common point of intersection [28]. Such a situation will also arise in
Section 2.3.8 that outlines tension cut-off extension of the original mohr-coulomb formu-
lation. While it is shown that four yield surfaces may become active at the same, again
only three of them can be chosen in the multi-surface plasticity stress update procedure
if limiting attention to isotropic material.

In every case, assuming rigid plasticity, the following generalization of Eqs. (2.164)
- (2.178) applies. Suppose that N yield surfaces are active. The increments of plastic
multipliers then follow from

{∆λ} = [L] {T}, (2.179)
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Figure 2.18: Transformation of coordinates for plane strain and axisymmetric problems

where the components of N ×N matrix [L] and N × 1 vector {T} are provided by

Lij = {ni}T
[
Del
]
{nj

g}, (2.180)

Ti = {ni}T
[
Del
]
{∆ε}. (2.181)

The tangent stiffness matrix then becomes

[Dep] =
[
Del
]
−
[
Del
]
(

N∑

i=1

{ni
g}{bi}T

)
[
Del
]
, (2.182)

{bi} =
N∑

j=1

L−1
ij {nj}.

Tangent stiffness matrix in the cartesian coordinate system The principal
stress space was adopted throughout this section to develope the general framework for
the implementation of the Mohr-Coulomb constitutive model. On the other hand, the
derivation of the finite element stiffness matrices presented in Section 1 assumes a material
point to be placed in a certain global cartesian coordinate system. The instantaneous 3×3
material tangent stiffness matrices that appear in Eqs. (2.178) and (2.182) thus require
some transformation as demonstrated in Fig. 2.3.7 For further reference these matrices
will be provided with subscript I while their cartesian counterparts will be denoted by
subscript g. The same notation is reserved also for respective stress and strain vectors.

The transformation law is usually found through equality of increments of work in
both coordinate spaces written as

{∆εg}T
[
Dep

g

]
{∆εg} = {∆εI}T [Dep

I ] {∆εI}. (2.183)

To continue, introduce a certain 3× 6 transformation matrix [Tε
I ] (note that the general

six-dimensional cartesian stress space is temporarily assumed)

[Tε
I ] =




n11n11 n12n12 n13n13 n12n13 n11n13 n11n12

n21n21 n22n22 n23n23 n22n23 n21n23 n21n22

n31n31 n32n32 n33n33 n32n33 n31n33 n31n32



 , (2.184)
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where nij represent components of 3×3 orthogonal rotation matrix [T] giving the relation
between coordinates in individual spaces, see Fig. 2.3.7, in the form

{xI} = [T] {xg}. (2.185)

With reference to Fig. 2.3.7 the matrix [T] then attains a simple form (assuming σ1 >
σ2 > σ3)

[T] =




cosα sinα 0
− sinα cosα 0

0 0 1


 , (2.186)

In general, individual columns in [T] correspond to principal directions of stresses σ1, σ2, σ3.
The matrix [Tε

I ] then rotates the cartesian strain components into the principal stress space
such that

{∆εI} = [Tε
I ] {∆εg}. (2.187)

Substitution of Eq. (2.187) into Eq. (2.183) yields
[
Dep

g

]
= [Tε

I ]
T [Dep

I ] [Tε
I ] (2.188)

Note that for plane strain and axisymmetric problems the general 6× 6 material stiffness
matrix

[
Dep

g

]
in Eq. (2.188) must be reduced into 4 × 4 matrix and suitably augmented

to comply with the notation introduced in Section 1. Finally, it is perhaps interesting to
point out the relation between stress vectors

{∆σg} =
[
Tσ

g

]
{∆σI}, (2.189)

where [
Tσ

g

]
= [Tε

I ]
T. (2.190)

2.3.8 Mohr-Coulomb model with tension cut-off

The standard Mohr-Coulomb model allows for certain amount of tension that is in general
proportional to the soil strength parameters c, ϕ such that its maximum value cannot
exceed

√
3 c cotϕ, see Fig. 2.19(a). In reality, however, the soil can sustain almost none

or very small values of these stresses. Also, the tension carrying capacity of soils is not
commonly relied upon as it is typically extremely variable and unpredictable in real soils.
It is therefore desirable to either avoid tension completely or to limit its magnitude by a
specific value of the ultimate tensile stress σt the material can sustain before plastic failure.
This can be achieved by introducing three additional tension cut-off yield surfaces of the
Rankine type, Figs. 2.19(b)(c), in the form

T1(σ1, σt) = σ1 − σt = 0, (2.191)

T2(σ2, σt) = σ2 − σt = 0, (2.192)

T3(σ3, σt) = σ3 − σt = 0. (2.193)

The model assumes the material to have isotropic properties and hence the ultimate
tensile strength σt is the same in all orientations. Furthermore, an associated plastic flow
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Figure 2.19: Mohr-Coulomb model extended by tension cut-off: a) 3D plot of Mohr-
Coulomb model in principal stress space, b) 3D plot of tension cut-off yield surface in
principal stress space, c) projection of tension cut-off surface into deviatoric plane, d)
projection of the combined Mohr-Coulomb and tension cut-off yield surfaces into σ1 − σ3

stress space

rule is adopted in conjunction with tension cut-off. The tensile yield surfaces plot as a
regular triangular pyramid in principal stress space, see Fig. 2.19(b).

The shear and tension yield surfaces intersect in the tensile domain of the principal
stress space. As a result, the tension yield surfaces “cut-off” the shear yield surfaces
leading to the effect of the material being able to ultimately sustain lower tensile stresses
than those predicted as being possible by the Mohr-Coulomb model alone, Fig. 2.19(d).
Note that point B in Fig. 2.19(d) corresponds to a point of intersection of the Mohr-
Coulomb Fmc and the tension cut-off Ft yield surfaces. Should the line A-C represent an
edge of two planes of the Mohr-Coulomb yield surfaces, then there would be at least three
simultaneously active yield surfaces.

If the material element were placed under triaxial tension then the stress path during
the increase in loading would follow the space diagonal towards the apex of the tension cut-
off pyramid. As the failure criterion would now map out as a regular triangular pyramid
rather than an irregular hexagonal pyramid the number of surfaces violated when the
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element reached the plastic state would be three as in the case of the pure Mohr-Coulomb
failure criterion.

2.4 Interface constitutive model

A proper modeling of soil–structure interaction requires a suitable treatment of relative
movement of the structure with respect to the soil that usually occurs. In the framework of
continuum mechanics, the most appealing way of treating interfaces is the use of interface
elements discussed in Section 1.3.4. The formulation of interface elements presented
therein will be completed in this section by introducing an interface material model that
can be used to simulate contact between two materials, e.g. a concrete pile and soil.

In GEO FEM the interface material is based on the Mohr-Coulomb failure criterion
with tension cut off, Fig. 2.20. An elastic – rigid plastic response of the interface material
in shear is assumed. Such a behavior is schematically illustrated in Fig. 2.21(a) showing
a variation of the shear stress as a function of the relative tangential displacement. In
tension or compression a purely elastic response of the interface material is considered.
When the tensile stress σ exceeds a certain allowable strength limit Rt, the initial yield
surfaces collapses to a residual surface which corresponds to dry friction, see Figs. 2.20
and 2.21(b).

2.4.1 Yield surface and stress update procedure

The mathematical representation of the initial yield surface displayed in Fig. 2.20 is given
by

F = |τ | + σ tanϕ− c, (2.194)
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where ϕ and c are the angle of internal friction and cohesion of the interface material,
respectively. The direction of the plastic flow depends on the shape of the plastic potential
surface. Here, a non-associated plastic flow rule is assumed with the plastic potential
function written as

G = |τ | + σ tanψ, (2.195)

where ψ is the angle of dilation. The angle of dilation controls the magnitude of the
irreversible (plastic) volume expansion. As stated in the previous paragraph, the plastic
response is limited to shear only which corresponds to the value of the dilation angle ψ
equal to zero (volume preserving return mapping), see Fig. 2.20. Thus, setting ψ = 0
gives the normals to the yield and potential surfaces, Eq. (2.34), in the form

n =
∂F

∂σ
=

{
τ/|τ |
tanϕ

}
, ng =

∂G

∂σ
=

{
τ/|τ |

0

}
, (2.196)

where the stress vector σ follows from Eq. (1.59)

σ = {τ, σ} T.

The normal to the plastic potential function ng then provides the direction of the plastic
flow governing the return mapping algorithm. This algorithm is schematically depicted
in Fig. 2.20. In particular, when solving a plasticity problem the analysis is carried out in
several load increments. To that end, suppose that stresses at state i− 1 are known and
we wish to proceed to a new stress state i by applying a new load increment. This step
results into an increment of the vector of relative displacements ∆ [[u]] = {∆ [[u]] ,∆ [[v]]}T.
The elastic “trial” stresses then follows from

τ i
tr = τ i−1 +Ks∆ [[u]]i , (2.197)

σi
tr = σi−1 +Kn∆ [[v]]i . (2.198)

The particular form of ng just confirms the elastic response in the normal direction so
that

σi = σi
tr,
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as evident from Figs. 2.20 and 2.21. The shear stress then follows from the yield condi-
tion (2.194). Note that during plastic flow the stresses must remain on the yield surface.
Therefore

F i = |τ i| + σi tanϕ− c = 0. (2.199)

Next, multiplying both sides of Eq. (2.199) by the first component of ng, noting that
τ i/|τ i| = τ i

tr/|τ i
tr| and then solving for τ i gives

τ i =
(
−σi

tr tanϕ+ c
) τ i

tr

|τ i
tr|
.

Thus, in the absence of pore pressure the stresses at the end of the ith load increment are
given by

{
τ
σ

}i

= Kn [[v]]i
{

0
1

}
+
(
−σi

tr tanϕ+ c
){ τ i

tr/|τ i
tr|

0

}
. (2.200)

2.4.2 Tangent stiffness matrix

Following [33] the algorithmic tangent stiffness matrix Eq. (2.48) can be found from the
expression

Dcons =
∂σi

∂ [[u]]i
. (2.201)

Referring to Eq. (2.200) it becomes evident that

∂

(
Kn [[v]]i

{
0
1

})
T

∂

{
[[u]]i

[[v]]i

} = Kn

[
0 0
0 1

]
, (2.202)

∂

(
(−σi

tr tanϕ+ c)

{
τ i
tr/|τ i

tr|
0

})
T

∂

{
[[u]]i

[[v]]i

} =

[
a11 a12

0 0

]
, (2.203)

where

a11 = (−σi
tr tanϕ+ c)

∂

∂τ i
tr

(
τ i
tr

|τ i
tr|

)
∂τ i

tr

∂ [[u]]i

a12 =
∂(−σi

tr tanϕ+ c)

∂σi

∂σi

∂ [[v]]i
τ i
tr

|τ i
tr|
.
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After expanding individual derivatives in the above expressions we get

∂

∂τ i
tr

(
τ i
tr

|τ i
tr|

)
=

1

|τ i
tr|

− τ i
tr (∂|τ i

tr|/τ i
tr)

|τ i
tr||τ i

tr|
=

1

|τ i
tr|

(
1 − τ i

trτ
i
tr

|τ i
tr||τ i

tr|

)
= 0,

∂(−σi
tr tanϕ + c)

∂σi
= − tanϕ,

∂τ i
tr

∂ [[u]]i
= Ks,

∂σi

∂ [[v]]i
= Kn.

Finally, introducing the above expressions back into Eq. (2.203) and then adding to
Eq. (2.202) provides the desired tangent stiffness matrix in the form

Dcons =

[
0 −Kn tanϕ (τ i

tr/|τ i
tr|)

0 Kn

]
. (2.204)

It is interesting to note that the same result will be recovered if starting from Eq. (2.33)
and setting H = 0. In other words, there is no difference between the standard and
algorithmic tangent stiffness matrices for the selected flow rule (ψ = 0).



Chapter 3

Critical state models for soils

3.1 Modified Cam clay model

Roscoe and his co-workers [32], in an attempt of confirming the original findings of
Hvorslev [14], introduced the concept of a critical void ratio state at which an unlim-
ited deformation can take place without altering the current stress and void ratio state.
Within this behavioral framework a strain-dependent yield surface controlling the progres-
sive yielding of a material sample can be defined. Regardless of their point of departure
all material points moving along a certain stress path with a progressively evolving yield
surface eventually end at a unique critical void ratio line that belongs to a certain unique
state boundary surface when plotted in J, σm, e space [32], where J is defined as the
square root of the second invariant of deviatoric stress, σm is the mean effective stress and
e = Vp/Vg stands for the void ratio given as the ratio of the volume of pores with respect
to the volume of grains.

Yield surface in e− ln(−σm)
Assuming isotropic loading conditions, J = 0, allows schematic projection of all points
on this surface into a domain bounded by the σm − e axis and the virgin or normal
consolidation line plotted in Fig. 3.1(a). As suggested in [32] this line represents a loosest
packing or greatest void ratio for any given value of σm stress. Although theoretically
acceptable (e = 0) a minimum value emin 6= 0 of void ratio that the soil can experience is
usually assumed. From the mathematical formulation the maximum value of void ratio e0
will be hereafter associated with a stress level ‖σm‖ = 1, Fig. 3.1. For a remoulded clay,
the soil initially moves down the virgin consolidation line. When unloaded at a certain
level of mean effective stress, e.g. p0

c , it moves up the so called swelling line. When
reloaded, it moves along the same line until it rejoins the normal consolidation line and
when stressed even further, it follows this line again.

Both lines are assumed to be straight in e− ln(−σm) space. Introducing the so called
compression and swelling moduli λ, κ, respectively renders the following equations defining
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Figure 3.1: Behavior under isotropic compression

the two lines

e = e0 − λ ln(−σm) – virgin consolidation line, (3.1)

e = e0 − κ ln(−σm) – swelling line. (3.2)

Note that minimum void ratio e0 is generally not known a priory. What is usually known
is the current or initial void ratio e0 that can be determined experimentally. As suggested
in [16] the value of e0 together with associated pressure p0

c and moduli λ, κ can be found
from a simple one-dimensional consolidation test when combined with mathematical for-
mulation of this experiment in the framework of inverse problems. Realizing that p0 = 1
kPa the determination of e0 then becomes quite straightforward. Finally, recall that
the points of intersection of the two λ− and κ−lines are linked to a certain stress level
termed the preconsolidation pressure p0

c , p
0
c , p

i
c, . . ., the maximum stress level the soil has

experienced ever before. From a mathematical formulation it appears more convenient
(assuming incompressibility of individual grains) to re-plot Fig. 3.1(a) in εv − ln(−σm)
space, εv being the total volumetric strain, see Fig. 3.1(b). Writing the elastic part of total
volumetric strain increment as ∆εel

v the rate forms of Eqs. (3.1) and (3.2) then become

σ̇m = −σm

λ∗
ε̇v – primary loading, (3.3)

σ̇m = −σm

κ∗
ε̇el

v – unloading-reloading, (3.4)

λ∗ =
λ

1 + e
, κ∗ =

κ

1 + e
. (3.5)

When moving along the λ−line the material point experiences plastic loading while
elastic response is assumed inside the domain. During plastic loading the total volumetric
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Figure 3.2: Elastic and plastic part of total strain increment

strain increment ∆εv can be split into elastic and plastic parts. With reference to Fig. 3.2
we get

∆εv = −λ∗
[
ln(pi+1

c ) − ln(pi
c)
]
, (3.6)

∆εel
v = −κ∗

[
ln(pi+1

c ) − ln(pi
c)
]
, (3.7)

∆εpl
v = −(λ∗ − κ∗)

[
ln(pi+1

c ) − ln(pi
c)
]
, (3.8)

or in the rate form

ε̇pl
v = −(λ∗ − κ∗)

ṗc

pc

. (3.9)

Integrating Eq. (3.9) then provides the evolution law for preconsolidation pressure pc

during primary loading in the form

pi+1
c = pi

c exp

[ −∆εpl
v

λ∗ − κ∗

]
. (3.10)

Eq. (3.10) thus gives a form of isotropic hardening/softening law for primary loading.
During elastic unloading or reloading the preconsolidation pressure pc remains constant.
In analogy with Eq. (3.10) the evolution of mean effective stress σm is provided by

σi+1
m = σi

m exp

[−∆εel
v

κ∗

]
. (3.11)

Yield surface in J − σm space

Assuming a constant value of the void ratio e and following the work of Roscoe and
Burland [31] the projection of the state boundary surface in J − σm space is plotted as
an ellipse given by

F (σ,κ) =
J2

M2
cs

+ σ2
m + σmpc = 0, (3.12)
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where pc is the current value of the preconsolidation pressure and Mcs is the slope of
critical state line, see Fig. 3.3. Note that Eq. (3.12) represents a yield surface of the
modified Cam clay model proposed in [31]. Its main advantage, apart from the ability
to describe (at least qualitatively) the real response of clays (particularly those found
in lightly overconsolidated state), is the simplicity in numerical implementation. In its
original format the full surface is a surface of revolution about the J-axis thus giving
a circular yield surface in the deviatoric plane. The allowable region for the material
point to undergo only an elastic response depends solely on the value of Mcs, which is
assumed to be constant depending on the value of critical state angle ϕcs. As for the
Drucker-Prager model it ranges between the values

M+30◦

cs (ϕcv) =
2
√

3 sinϕcv

3 − sinϕcv
for triaxial compression, (3.13)

M−30◦

cs (ϕcv) =
2
√

3 sinϕcv

3 + sinϕcv
for triaxial extension. (3.14)

With reference to Eq. (3.10) the size of the ellipse changes depending on the current
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Figure 3.3: Cam clay model – yield function

value of the preconsolidation pressure pc. For the material found on the subcritical side
the yield surface expands with the direction of plastic strain normal to the yield surface
(associated plasticity is assumed) until the point of intersection with the critical state line
is reached. At this point (point 3 in Fig. 3.3), the normal to the yield surface is vertical
thus no plastic volumetric strain is predicted at this point. Hence, all the plastic strain is
distortional. When further sheared under constant volume, the material point behaves as
rigid plastic with no chance in stress. Such a response is consistent with what is observed
in reality. When on the supercritical side, the constitutive model predicts softening. The
amount of softening, however, is too excessive when compared to real soil behavior. In
addition, for highly overconsolidated soils the model significantly overestimates the failure
stresses. These drawbacks observed by many investigators led to the development of series
of cam clay formulations in an attempt to modify the prediction of the clay response on
the supercritical side. Mostly, combined yield surfaces were proposed. An overview of
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Figure 3.4: Generalized Cam clay model – yield function

several such models is presented in [29]. Another possible modification is suggested in the
next section.

3.2 Generalized Cam clay model

In this section a modification to the original formulation of the modified Cam clay model is
examined. In particular, to overcome several drawbacks of the original model a new model
here termed the generalized Cam clay model is proposed. Similar to existing formulations
the yield function is composed of two smoothed functions continuously connected at the
point of intersection with the critical state line. Graphical representation is displayed in
Fig. 3.4. Mathematically, the two functions assume the form

F (σ,κ) =

{
Fc, pro σm ≤ −pc/2 (subcritical side),
Fd, pro σm > −pc/2 (supercritical side),

(3.15)

Fc =
J2

g2(θ, ϕcv)
+ σ2

m + σmpc, (3.16)

Fd =
J2

g2(θ, ϕcv)
− β

[
σ2

m −
(
− σm

γpc

)1+α

(γpc)
2

]
, (3.17)

where parameters α, β, γ are defined such as to give a vertical normal to the yield surface
at the joint point of the two functions on the one hand and to maintain compatibility
of both yield functions for any value of Lode’s angle θ. At zero deviatoric stress J they
suggest a common tangent of the function Fd with the Modified Mohr-Coulomb model,
see Fig. 3.4 where the values of g̃(θ, ϕcv, ϕ) and p̃c(ϕ, ϕcv) are given by

g̃(θ, ϕcv, ϕ) = g(θ, ϕcv)
√
β(ϕ, ϕcv), (3.18)

p̃c(ϕ, ϕcv) = γ(ϕ, ϕcv) pc. (3.19)
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These are

α =
β + 1

β − 1
, (3.20)

β =

(
sinϕ

sinϕcv

3 − sinϕcv

3 − sinϕ

)2

, (3.21)

γ =

(
2α

1 + α

) 1

1−α

, (3.22)

where ϕ is the peak value of the angle of internal friction also being the only new param-
eter in the proposed model. Note that no changes are introduced on the subcritical side.
The smooth transition from one surface to the other not only considerably simplifies the
numerical implementation, but also ensures fulfilling the critical state condition already
predicted by the modified Cam clay model. Furthermore, the model also predicts a unique
state boundary surface and the consolidation/swelling behavior. Unlike for the modified
Cam clay model, the swelling behavior and the failure stresses, in particular, are consid-
erably suppressed. Such a behavior is in better accordance with reported experimental
results.

Further modification arises when introducing a non-circular yield surface in the devi-
atoric plane. Such a step has been put forward in [29] owing to the fact that a circle does
not represent well the failure conditions for soils. With reference to works of Lade and
Kim&Lade [20, 18, 21], Matsuoka&Nakai [26], Van Eekelen [9], to cite a few, a smoothed
triangle for a yield surface in the deviatoric plane is adopted. On the subcritical side the
constant value of Mcs is replaced by the function g already introduced for the modified
Mohr-Coulomb plasticity model in Section 2.3.5

g(θ, ϕcv) = X(Y1 + Y2 sin 3θ)−Z , (3.23)

X = 2(Z+1)
√

3 sinϕcv, (3.24)

Y1 = (3 − sinϕcv)
1

Z + (3 + sinϕcv)
1

Z , (3.25)

Y2 = (3 − sinϕcv)
1

Z − (3 + sinϕcv)
1

Z . (3.26)

To reduce complexity on the implementation part a non-associated plasticity is as-
sumed with a circular shape of the plastic potential in the deviatoric plane, see also
discussion in Section 2.3.5 on the choice of the shape of yield surface and plastic potential
in the deviatoric plane. In summary, the proposed model requires specification of six
independent parameters. The bilinear diagram of isotropic consolidation is determined
through material constants κ, λ, e0 and the current value of preconsolidation pressure pc.
The yield surface and plastic potential are fully described by parameters ϕ, ϕcv and pc.

3.3 Numerical integration - stress update procedure

A fully implicit Euler backward integration scheme for integration of the resulting system
of rate equations as proposed, e.g. by Borja [3] and further developed by Groen [11] is
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adopted. A specific form of implicit integration scheme, also implemented in the program
GEO FEM, is presented in subsequent sections for both the modified and generalized
Cam clay model.

3.3.1 Modified Cam clay model

With the help of Eq. (2.2) the yield function given by Eq. (3.12) attains the following
form

F =
1

2

σTPσ

M2
cs

+ (mT σ)2 + mT σpc. (3.27)

Next, assuming the associated flow rule the increments of plastic volumetric εpl
v and de-

viatoric epl strains follow from

∆εpl
v = ∆λ

∂F

∂σm

= ∆λ(2σm + pc), (3.28)

∆epl = ∆λ
∂F

∂s
= ∆λ

Pσ

M2
cs

= ∆λ
Q

−1s

M2
cs

, (3.29)

which gives the increment of total plastic strain vector in the form

∆εpl = ∆λ

[
Pσ

M2
cs

+ (2σm + pc)m

]
, (3.30)

where ∆λ represents an increment of plastic multiplier and s is the deviatoric stress
vector. Next, recall Eq. (3.11) and write the increment of effective mean stress as

∆σm = σi+1
m − σi

m = σi
m

(
exp

[−∆εel
v

κ∗

]
− 1

)
= Ks∆ε

el
v . (3.31)

Noting that
∆εel

v = ∆εv − ∆λ(2σi+1
m + pi+1

c ), (3.32)

provides the secant bulk modulus Ks as a function of the current stress state in the form

Ki+1
s = σi

m

exp

(
−∆εv − ∆λ(2σi+1

m + pi+1
c )

κ∗

)
− 1

∆εv − ∆λ(2σi+1
m + pi+1

c )
. (3.33)

Using a standard predictor corrector procedure together with Eq. (3.29), the deviatoric
stress at the end of the current load increment is provided by

si+1 =
si + 2Gi+1

s Q∆e

1 +
2Gi+1

s ∆λ

M2
cs

, (3.34)

where the secant shear modulus Gs is usually written assuming a constant Poisson ratio
ν as

Gs =
3(1 − 2ν)

2(1 + ν)
Ks. (3.35)
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The analysis that properly accounts for the variation of elastic moduli, Eqs. (3.33) and
(3.35), is often called variable elasticity return mapping, while an analysis that keeps
the elastic moduli constant over the current strain increment is referred to as constant

elasticity return mapping [29]. In the latter case Eq. (3.11) simplifies to

σi+1
m =

σi
m +K (∆εv − ∆λpi+1

c )

1 + 2K∆λ
, (3.36)

where the bulk modulus K is no longer stress dependent. Finally, the variable harden-
ing/softening modulus follows from the consistency condition given by Eq. (2.18). Since
preconsolidation pressure pc(κ = εpl

v ) is the only hardening parameter we get, when em-
ploying Eq. (2.19),

∂F

∂κ
=

∂F

∂εpl
v

=
∂F

∂pc

∂pc

∂εpl
v

= − σmpc

λ∗ − κ∗
, (3.37)

so that the plastic modulus H reads

H = (2σm + pc)
σmpc

λ∗ − κ∗
. (3.38)

Implicit integration scheme for variable elasticity return mapping

Assuming variable elasticity return mapping driven by Eqs. (3.10), (3.11) and (3.33)-
(3.34) gives the following set of residuals {r}T = {S,P,F} to be minimized simultaneously






S
P
F




 =






σi+1
m − σi

m exp

[
− 1

κ∗
{
∆εv − ∆λ

(
2σi+1

m + pi+1
c

)}]

pi+1
c − pi

c exp

[
− ∆λ

λ∗ − κ∗
(
2σi+1

m + pi+1
c

)]

(J i+1)
2

M2
cs

+
(
σi+1

m

)2
+ σi+1

m pi+1
c






, (3.39)

for the vector of unknown primary variables {a}T = {σi+1
m

(
∆λ, pi+1

c

)
, pi+1

c

(
∆λ, σi+1

m

)
,∆λ}.

See also [11] for further details. Usually, the Newton-Raphson (N-R) method is called to
minimize the set of residuals (3.39). At each local N-R iteration step the instantaneous

values of J i+1 =
√

1
2
si+1TQ

−1si+1 and Gi+1 follow from Eqs. (3.34) and (3.35). Note that

during the N-R iteration the condition ∆ε = const is adopted. Thus for the system of
nonlinear algebraic equations the kth iteration of the N-R scheme assumes the form

{ai+1}k+1 = {ai+1}k − [H]−1 {r}k. (3.40)

The 3 × 3 Jacobian matrix [H] reads

[H] =

[
∂r

∂a

]T

+

{
∂r

∂J

}{
∂J(∆λ,Gs(σm, pc,∆λ))

∂a

}T

, (3.41)

=




∂S

∂σm

∂S

∂pc

∂S

∂∆λ

∂P

∂σm

∂P

∂pc

∂P

∂∆λ

∂F

∂σm
+
∂F

∂J

∂J

∂Gs

∂Gs

∂σm

∂F

∂pc
+
∂F

∂J

∂J

∂Gs

∂Gs

∂pc

∂F

∂J

(
∂J

∂∆λ
+

∂J

∂Gs

∂Gs

∂∆λ

)




.
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To complete the return mapping, it is assumed that the initial conditions for the solution
of Eq. (3.40) are defined by the elastic trial stress so that

{a0}T = {σtr
m, p

i
c, 0}, (3.42)

{r0}T = {0, 0, (J
tr)2

M2
cs

+ (σtr
m)

2
+ σi+1

m ptr
c }. (3.43)

where the trial stresses σtr
m, s

tr are provided by

σtr
m = σi

m +Ki
s∆εv. (3.44)

str = si + 2QGi
s∆e. (3.45)

Implicit integration scheme for constant elasticity return mapping

The solution of the nonlinear system of equations considerably simplifies when constant

elasticity return mapping is adopted. In such a case the stress variables required at the
end of a given load increment are

σi+1
m =

σtr
m −Ki∆λpi+1

c

1 + 2Ki∆λ
, (3.46)

si+1 =
str

1 +
2Gi∆λ

M2
cs

, (3.47)

J i+1 =
J tr

1 +
2Gi∆λ

M2
cs

, (3.48)

where the trial stress components follow from Eqs. (3.44)-(3.45) and the elastic moduli
Ki, Gi are taken at the beginning of integration step. They can be determined from
Eqs. (3.4), (3.31) and (3.35)

Ki = −σ
i
m

κ∗
, (3.49)

Gi =
3(1 − 2ν)

2(1 + ν)
Ki. (3.50)

The resulting system of implicit nonlinear algebraic equations then reduces to

P = pi+1
c − pi

c exp

[
− ∆λ

λ∗ − κ∗
2σtr

m + pi+1
c

1 + 2Ki∆λ

]
= 0, (3.51)

F =
(J i+1)

2

M2
cs

+
(
σi+1

m

)2
+ σi+1

m pi+1
c = 0. (3.52)

This set of equations can be solved applying the same procedure as discussed for the
variable elastic return mapping. Clearly, adopting the described implicit integration algo-
rithm directly accounts for the yield strength dependent evolution of plastic flow direction
as typical for both the modified and generalized Cam clay models.
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3.3.2 Generalized Cam clay model

To keep formal similarity with the previous section we start by writing the yield functions
in the form of Eq. (3.27) to get

Fc =
1

2

σTPσ

g2(θ, ϕcv)
+ (mTσ)2 + mTσpc, (3.53)

Fd =
1

2

σTPσ

g2(θ, ϕcv)
− β

[
(mTσ)2 −

(
−mTσ

γpc

)1+α

(γpc)
2

]
. (3.54)

As already suggested in Section 3.2 a non-associated plastic flow is assumed with the
circular shape of plastic potential in the deviatoric plane. Such functions are obtained
by replacing Lode’s angle dependent function g(θ, ϕcv) in Eq. (3.23) with a new function
gG(θc, ϕcv), where θc represents Lode’s angle at the point in stress space at which the
gradients of the plastic potential are required [29], see also Section 2.3.4 and Fig. 2.5 for
the definition of plastic potential. Recall that the current stress point has to reside not
only on the yield, but also on the plastic potential surface. Therefore

Gc =
1

2

σTPσ

g2
G(θc, ϕcv)

+ (mTσ)2 + mTσpc, (3.55)

Gd =
1

2

σTPσ

g2
G(θc, ϕcv)

− β

[
(mTσ)2 +

(
−mTσ

γpc

)1+α

(γpc)
2

]
. (3.56)

To derive the elasto-plastic tangent stiffness matrix from Eq. (2.48) the differentials
defining the normals to the yield and plastic potential surfaces together with the hardening
modulus H are needed. Employing Eqs. (2.34) provides

nc =
∂Fc

∂σ
=

1

g2
Pσ + 2mTσm + pcm − 2J

g3

∂g

∂σ
, (3.57)

nd =
∂Fd

∂σ
=

1

g2
Pσ − β

[
2mTσm + (1 + α)

(
−mTσ

γpc

)α

γpcm

]
(3.58)

−2J

g3

∂g

∂σ
,

nGc =
∂Gc

∂σ
=

1

g2
G

Pσ + 2mTσm + pcm, (3.59)

nGd =
∂Gd

∂σ
=

1

g2
G

Pσ − β

[
2mTσm + (1 + α)

(
−mTσ

γpc

)α

γpcm

]
. (3.60)

where, e.g. the term
∂g

∂σ
=
∂g

∂θ

∂θ

∂σ
can be obtained from Eqs. (2.86)-(2.87). To derive the

desired variable plastic hardening/softening modulus H we follow the steps described in
the previous section starting again from the consistency condition (2.18) to get

Hd = − dFd

dεpl
vd

dεpl
vd

d∆λ
, (3.61)
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where

dεpl
vd

d∆λ
=

∂Fd

∂σm
= −2βσm − β(1 + α)

(
− σm

γpc

)α

γpc,

dFd

dεpl
vd

=
∂F

∂pc

∂pc

∂εpl
v

= −βγ(1 − α)

(
− σm

γpc

)1+α

γpc ×
pc

λ∗ − κ∗
.

When the stress point is found on the compaction (subcritical) side the modulus Hc

attains the form given by Eq. (3.38).

As for the plastic strain increments it is worth to note that no multi-surface plasticity
concept is needed. This is attributed to the fact that only a single plastic flow either
on dilation or compaction side can be active and at their joint point both flows predict
the same critical state with no volume change. Therefore, owing to the assumed non-
associated plasticity the respective plastic strain increments are given in the form

∆εpl
vc = ∆λ

∂Gc

∂σm

= ∆λ (2σm + pc) , (3.62)

∆εpl
vd = ∆λ

∂Gd

∂σm
= ∆λβ

[
−2σm − (1 + α)

(
− σm

γpc

)α

γpc

]
, (3.63)

∆epl
c = ∆λ

∂Gc

∂s
= ∆λ

Pσ

g2
G

, (3.64)

∆e
pl
d = ∆λ

∂Gd

∂s
= ∆λ

Pσ

g2
G

. (3.65)

The current stresses and instantaneous secant bulk modulus K then follow from equations
listed in Section 3.3.1 when applying specific forms of Eqs. (3.62)-(3.65).

Implicit integration scheme for variable elasticity return mapping

The general scheme of the stress update procedure was already presented in Section 3.3.1.
Hereafter, we thus limit our attention only to specific differences that arise from the
definition of the functions Fc, Fd. In particular, inspecting Eqs. (3.39)-(3.45) suggests
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that the only difference appears in certain entries of the Jacobian matrix H , which are

H31 =
∂F

∂σm
+
∂F

∂J

∂J

∂Gs

∂Gs

∂σm
+

+
∂F

∂g

∂g

∂sin 3θ

(
∂ sin 3θ

∂J

∂J

∂Gs

∂Gs

∂σm
+
∂ sin 3θ

∂I3s

{
∂I3s

∂s

}T{
∂s

∂Gs

}
∂Gs

∂σm

)
, (3.66)

H32 =
∂F

∂pc

+
∂F

∂J

∂J

∂Gs

∂Gs

∂pc

+

+
∂F

∂g

∂g

∂sin 3θ

(
∂ sin 3θ

∂J

∂J

∂Gs

∂Gs

∂pc
+
∂ sin 3θ

∂I3s

{
∂I3s

∂s

}T{
∂s

∂Gs

}
∂Gs

∂pc

)
, (3.67)

H33 =
∂F

∂J

(
∂J

∂∆λ
+

∂J

∂Gs

∂Gs

∂∆λ

)
+

+
∂F

∂g

∂g

∂sin 3θ

(
∂ sin 3θ

∂J

[
∂J

∂∆λ
+

∂J

∂Gs

∂Gs

∂∆λ

]
+

∂ sin 3θ

∂I3s

{
∂I3s

∂s

}T [{
∂s

∂∆λ

}
+

{
∂s

∂Gs

}
∂Gs

∂∆λ

])
, (3.68)

where F = Fc(ϕcv) when referring to subcritical side, while F = Fd(ϕ, ϕcv) when the
flow controlled by function Fd is active. Recall that Gs is the instantaneous secant shear
modulus.
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3.3.3 Note on numerical implementation

An important issue which requires our attention is the determination of initial precon-
solidation pressure pin

c and associated initial bulk modulus Kin. Recall that these two
parameters are not included in the standard material setting of the modified or general-
ized Cam clay model in the program GEO FEM. Instead, their distributions are derived
on the basis of the assumed geostatic stress profile.

The distribution of initial geostatic stress in GEO FEM is always calculated in the
first construction stage. The user may choose from the following three options:

• Ko procedure
The Ko procedure is described in detail in the second part of this manuscript sug-
gesting the initial mean stress in the form

σm =
1

3
γ h (1 + 2Ko) , (3.69)

where Ko is the coefficient of lateral earth pressure at rest, γ is the bulk unit weight,
ν is the Poisson ratio and h is the actual depth of a stress point in the soil profile.
If we assume that the clay did not experience greater vertical stresses in the past
(normally consolidated clay) then the value of initial preconsolidation pressure is
determined for the current stress to sit on the yield surface. This gives for the
modified Cam clay model

pin
c = − J2

M2
csσm

− σm. (3.70)

For overconsolidated clays the value of pin
c is further adjusted to get

pin
c = pin

c OCR, (3.71)

where OCR is the overconsolidation ratio. The initial bulk modulus then follows
directly from Eq. (3.49)

Kin = −1 + e

κ
σm, (3.72)

where the current void ratio e reads

e = e0 − λ ln(pin
c ) + κ ln(−p

in
c

σm
). (3.73)

Recall that e0 represents the minimum void ratio on virgin consolidation line at
pc = 1. For small stresses |σm| < 1 the following initial conditions are considered

pin
c = 1, Kin = −1 + e0

κ
. (3.74)

• Elastic analysis
Note that the program GEO FEM allows us to switch from one material model to
another between two construction stages. This option can therefore be exploited in
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cases where Ko procedure is not applicable. In particular, the soil to be represented
by one of the two Cam clay models is assumed to follow a linear Hooke’s law in the
first construction stage. The corresponding initial stress conditions are then used in
Eqs. (3.70) - (3.74) in place of Eq. (3.69) to derive the desired distributions of pin

c and
Kin. From the second construction stage the linear elastic model is substituted by
an appropriate plastic one to obtain more realistic predictions of the soil behavior.

• Plastic analysis
The plastic analysis involves plastic material models for clayey soils already in the
first constructions stage. During calculation, the soil is thus assumed to move
down the virgin consolidation line with the initial values of pin

c and Kin given by
Eq. (3.74). Subsequently, overconsolidated soils are adjusted using Eq. (3.71). All
plastic deformations that arise during the first calculation stage are set equal to zero
before resuming any further calculations.

3.3.4 Note on determination of parameters κ and λ

Our experience indicates that unlike Young’s modulus or Poisson’s ratio the swelling mod-
ulus κ and the compression modulus λ in particular are, however, unknown to majority of
practical users. This is also why the critical state models still receive much less attention
in comparison with rather classical Mohr-Coulomb like models.

As suggested in [16] a simple one-dimensional consolidation test can be used to de-
rive most of the required parameters through the solution of a certain inverse problem.
Although relatively straightforward, this approach will nevertheless prove viable only if
handled by another commercial software, which to our knowledge is currently not avail-
able.

Consequently, standard oedometer tests still appear as the most appropriate investi-
gation at least from the practical users point of view. To establish a link between the κ
and λ moduli and the corresponding parameters derived from oedometer tests is therefore
the main issue of this section.

It is well known that the complete stress state of a sample in the oedometer apparatus
in not known. Unlike the triaxial apparatus the oedometer apparatus provides only the
axial stress σy (see Fig. 1.1 for the selected coordinate system) and the total volumetric
strain εv equal to the axial strain εy. Assuming undrained conditions the results from
oedometer tests are often plotted in terms of e − log(−σy) diagram, see Fig. 3.5(a).
This graph is very similar to e − ln(−σm) diagram plotted in Fig. 3.1. Owing to the
geometrical constraints imposed by a standard oedometer apparatus the slope of the
virgin consolidation line is called the one-dimensional compression index written as

Cc =
∆e

∆ log(−σy)
=

∆e

log
σi+1

y

σi
y

. (3.75)

To bring the compression modulus λ and the one-dimensional compression index Cc to
the same footing we introduce the coefficient of lateral earth pressure at rest for normally
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Figure 3.5: Behavior under one dimensional compression: a) idealization, b) typical result
of an oedometric test

consolidated soils KNC
o and write the effective mean stress as

σm =
1

3
(1 + 2KNC

o )σy. (3.76)

Note that KNC
o is often estimated from Jaky’s formula KNC

o = 1 − sinϕ, where ϕ is the
effective angle of internal friction. Since KNC

o is approximately constant along the virgin
compression line [30, Chapter 1] we get, recall Eq. (3.1),

λ =
∆e

∆ ln(−σm)
=

∆e

ln
σi+1

m

σi
m

=
∆e

ln
σi+1

y

σi
y

. (3.77)

Since ln x = 2.3 log x we get after comparing Eqs. (3.75) and (3.77)

λ =
Cc

2.3
. (3.78)

Assuming that the swelling lines also plot as straight lines in both e − ln(−σm) and
e− log(−σy) diagrams as shown in Figs. 3.1(a) and 3.5(a) gives similar approximation of
the swelling modulus κ in terms of the swelling index Cs as

κ ≈ Cs

2.3
. (3.79)

However, such an assumption is not valid in general. In fact, Ko is not constant along
the swelling line but rather increases during unloading as schematically demonstrated in



80 CHAPTER 3. CRITICAL STATE MODELS FOR SOILS

Fig. 3.5(b). A modification to Eq. (3.79) is given in [24, Material model manual, Chapter
6]

κ ≈ 3
1 − νur

1 + νur

Cs

2.3
, (3.80)

where νur represents Poisson’s ratio derived from the ratio of differences in the horizontal
and vertical stress developed in oedometer during unloading and reloading

∆σx =
νur

1 − νur
∆σy = Ko∆σy. (3.81)

With this definition it is easy to show that

3
1 − νur

1 + νur

=
3

1 + 2Ko

. (3.82)

However, neither of the two approximate relations for the swelling modulus κ are univer-
sally accepted and should therefore be used with considerable caution. Finally note that
Eq. (3.80) reduces to Eq. (3.79) under incompressibility condition since for νur = 0.5 the

term 3
1 − νur

1 + νur

= 1.



Chapter 4

Constitutive models for structural

elements

An important topic which needs to be addressed is concerned with the methods of sup-
porting walls (props, ties, anchors) or reinforcing the soil body (geo-reinforcements). A
two-node rod element with an axial stiffness but with no bending stiffness can be used to
model horizontal struts, raking struts, geotextiles or node-to-node anchors. In general the
element is used to model ties between two points in space. In the current implementation,
such an element is considered to be a free element not necessarily connected to the under-
lying finite element mesh. Its deformation is realized by tying the free element nodes to
the active nodes in the element mesh. This step is done automatically. This element can
be subjected to both tensile forces (anchors, geo-reinforcements) and compressive forces
(props). Allowable limits on the tensile as well as compressive force can be set to simulate
element failure, e.g., anchor tensile failure or compressive failure of props due to buckling.

R t

Rc

σ

ε

1 σ

ε

σ in

EA/L

Figure 4.1: Constitutive model for anchors

The material behavior is limited to linear elasticity up to failure as shown in Fig. 4.1.
The corresponding incremental stress-strain relationship assumes the form

∆σ =
EA

L
∆ε+ ∆σin, (4.1)

81
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where E is Young’s modulus, A represents the element cross-sectional area and L is the
element length; ∆σin stands for the initial stress increment associated with the initial
anchor pre-stress given by

∆σin =
∆Fpre

A
, (4.2)

where Fpre is the applied pre-stress force. Values Rt and Rc in Fig 4.1 correspond to
allowable tensile and compressive strengths, respectively. Note that care must be taken
when computing the axial element stiffness EA/L in plane strain applications as it should
represent an equivalent axial stiffness per unit length that takes into account the element
spacing in the out of plane direction.

As a default setting the element is assumed to sustain zero compressive stress. Thus,
it is deactivated when in compression. But it can be reactivated again when subjected
to tension. However, when the allowable strength limits are exceeded the element is
automatically removed from the analysis. A few examples are now presented to simulate
the application of individual structural elements.

4.1 Grout anchors

Structural applications often require modeling grout anchors that are in contact with a soil
body along its entire length. Although geo-reinforcements discussed further in this section
can be used in this regard, there is another, perhaps more appealing option allowing for
gradual mobilization of the normal force in an anchor. This effect can be achieved by
introducing, instead of one, a system of point-to-point anchors of different lengths. Such
an approach gives further the possibility of representing gradual pull-out of an anchor
when exceeding the limit shear strength by removing those anchors from the system, in
which the maximum tensile strength is reached.

As an example, we consider a grout anchor represented by a system of four point-to-
point (ground) anchors as shown in Fig. 4.2(d). The material stiffness of each anchor
follows from a simple idea. To that end, consider a uniform distribution of interface shear
stress along the anchor length, Fig. 4.2(a). Such an assumption then provides a linear
distribution of normal force in the anchor, Fig. 4.2(b)

N(x) = τpl(l − x),

N0 = τpll,

where N0 is the maximum normal force developed at the anchor starting point. In the
program GEO FEM such a state can be approximated by introducing, e.g., four ground
anchors to get the distribution plotted in Fig. 4.2(c). An augmented Young’s modulus
E∗ of each anchor arrives from the condition of the same elongation of a real anchor and
a substitute anchor tow

∆l =
1

4
N

′

0

l

E∗A′
– model,

∆l =
1

2
N

′

0

l

EA′
– reality,
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(a)

(b) (c)

(d)

Figure 4.2: Modeling of anchors: (a) assumed constant shear, (b) linear normal force, (c)
piecewise linear approximation, (d) application
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so that

E∗ =
E

2
.

The resulting maximum normal force is the given by

N
′

0 = 4E∗A′∆l

l
.

4.2 Geo-reinforcements

Geo-reinforcements are tensile reinforcing elements (geotextiles, geogrids) represented
again by elastic bar elements and specified by their end points and axial stiffness. Unlike
anchors, a geo-reinforcement is linked to an underlying finite element mesh along its entire
length. However, similar to anchors the program introduces the geo-reinforcement end
points into the finite element mesh automatically so it can be specified anywhere within
the mesh.

The program allows for compressive forces to be transmitted in geo-reinforcement,
Fig. 4.3(b). This option, however, should be used with caution. More appropriate models
disable the part of geo-reinforcement found in compression for the analysis. Such a state is
simulated in Fig. 4.3(c) showing the distribution of normal tensile forces over active parts
of individual geo-reinforcements. The compressive part of a geo-reinforcement is excluded
from the analysis. Similar to anchors, however, it can be automatically activated once
loaded again in tension.

When introducing a geo-reinforcement into a soil body it is necessary to keep in mind a
sufficient anchorage, since the program does not check the geo-reinforcement against shear
failure. A sudden increase of the normal force as shown in Fig. 4.4(b) suggests singularity
in contact stresses and probable shear failure of the geo-reinforcement. From that point
of view the distribution displayed in Fig. 4.4(b) is misleading and essentially unrealistic.
In such a case, the reinforcement should be either removed from the analysis or ensure its
sufficient anchorage beyond the developed slip surface as plotted in Fig. 4.4(c).

4.3 Props

Props are supporting elements represented by an elastic bar element with constant normal
stiffness. The props can sustain only compressive loading. When put into tension they
are removed from the analysis. This is illustrated in Fig. 4.5. Similarly to anchors, the
props are tied to the finite element mesh in only two points. If the prop is positioned into
the soil, then no interaction between the soil and prop along the prop length is considered.
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(a)

(b) (c)

Figure 4.3: Modeling of geo-reinforcements: (a) structural setup, (b) compression allowed,
(c) compression excluded

(a)

(b) (c)

Figure 4.4: Modeling of geo-reinforcements in slope stability analysis - effect of anchorage:
(a) structural setup, (b) insufficient anchorage, (c) correct anchorage

(a) (b)

Figure 4.5: Modeling of props - only compressive forces are transmitted



Chapter 5

Modeling of ground water flow

So far, when addressing the ground water flow, we have limited our attention to fully
drained soil behavior assuming the pore water pressure distribution is known and does
not change change with the deformation of the soil body. Its influence then appears
directly as a contribution to the right hand side vector of the governing finite element
equations already discussed in Chapter 1, recall Eqs. (1.50) and (1.69). Such steady state
water flow conditions can be identified with the state of a time dependent consolidation
process at a time instant approaching infinity. Another extreme soil condition assuming
fully undrained soil behavior then corresponds to the onset of consolidation at a time
equal to zero. Since many engineering problems can be solved adopting either of the two,
or a combination of both extreme conditions, it appears useful to address the pore water
contribution in more detail. In particular, it will be shown, how these two extreme soil
conditions can be obtained from general consolidation equations governing the pore water
flow and the deformation of the soil due to loading in a coupled manner.

Formulation of a set of fundamental equations for a saturated-unsaturated flow in
a deforming porous medium with a restriction to a one-phase flow will therefore open
this chapter. Their application for the solution of the two, time independent, extreme
conditions will be considered next. First we present the theory for the solution of soil
deformation under fully undrained conditions (t = 0) assuming fully saturated soil and a
zero flux boundary condition (no flow across the entire boundary of the analyzed domain).
The second extreme soil condition assumes pore water flow through the soil skeleton
being again independent of time but at t → ∞ (fully drained soil condition). The two
governing equations then decouple resulting in the solution of a steady state seepage
problem. This will be examined in the context of two different types of pore water
flow: an unconfined flow that requires tracking the free surface separating saturated and
unsaturated zones (phreatic surface), see e.g. seepage analysis of earth dams [23], or a
confined flow which does not involve the phreatic surface. The chapter then continues by
addressing the problem of flow through a thin layer using interface elements which allow for
a direct simulation of various flow conditions including fully permeable or impermeable
walls. A special treatment of so called precipitation boundary conditions is discussed
next. These are essentially dual boundary conditions [29] assigned to a portion of the
boundary where both a hydraulic head or a flux boundary condition might be imposed

86
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Figure 5.1: Simplified definition of a two-phase medium

depending on the hydraulic state inside and outside of the domain along this boundary. A
particular interface element based on the penalty method was developed in [1] to handle
these conditions. A similar yet more simple approach is developed here in Section 5.4.2.
Instead of using interface elements the seepage boundary conditions are dealt with by
drawing a parallel with a nonlinear spring like support. The chapter concludes by solving
a one-dimensional consolidation problem, which is exploited here to extract the material
parameters using the modified and generalized Cam clay models.

5.1 One-phase flow in a partially saturated deform-

ing medium

Soils are often regarded as a three-phase porous medium (skeleton) consisting of grains
(a solid phase s) and pores filled with liquid water (w) and moist air (g) as sketched
in Fig. 5.1. Suppose that a sufficiently large (representative) volume of a three-phase
medium Ω can be selected to define a volume average of the mass density ρr of a given
phase r as

ρr =
1

Ω

∫

Ω

ρ(x)χr dΩ = crρ
r, (5.1)

where χr is a characteristic function equal to one if the point x is found in the phase r
and equal to zero otherwise, cr = Ωr/Ω represents the volume fraction of a given phase
and ρr is the intrinsic mass density written as

ρr =
1

Ωr

∫

Ω

ρ(x)χr dΩ. (5.2)

The overall mass density in a certain macroscopic point is then provided by

ρ = ρs + ρw + ρg = (1 − n)ρs + nSwρ
w + nSgρ

g, (5.3)

suggesting that

cs = 1 − n cw = nSw cg = nSg, Sw + Sg = 1,
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where Sw and Sg represent the degree of saturation associated with liquid water and moist
air, respectively, and n is the porosity typically written in terms of the void ratio e as

n =
e

1 + e
, e =

Ωw + Ωg

Ωs

. (5.4)

The pore pressure ps acting on a solid phase can be then expressed as

ps = Swp
w + Sgp

g. (5.5)

To simplify the model it will be further assumed that during the flow the moist air will
remain at atmospheric pressure. Next, taking the atmospheric pressure as the reference
pressure gives pg = 0 so that, see also [19],

ps = Swp
w = Sp. (5.6)

Eq. (5.3) then reduces to

ρ = (1 − n)ρs + nSρw. (5.7)

Note that ρ = ρdry or ρ = ρsat depending on whether the macroscopic point is found above
or below the ground water table. Such a simplified two-phase model, which essentially
treats the liquid and gaseous phases as the mixture of a one-phase compressible fluid
moving throughout the porous skeleton (Fig. 5.1), will be adopted henceforth. Readers
interested in a more general description of moisture and heat transfer in porous media
are referred to [22, 19].

5.1.1 Constitutive equations

A standard volume averaging already employed in Eqs. (5.3) and (5.7) to define an effective
mass density of the porous skeleton allows us to write the total stress σ in terms of the
stress σs developed in the solid phase and the stress Sp transmitted by the pores as

σ = (1 − n)σs − 3m(nSp) = (1 − n)(σs + 3mSp)︸ ︷︷ ︸
σeff

−3mSp, (5.8)

which reduces to Eq. (1.48) assuming fully saturated soil consisting of rigid grains. Recall
that σeff then represents the effective stresses between the grains. Taking on the other
hand the strains in the bulk material due to changes of the pore pressure Sp into account
yields Eq. (1.48) in a slightly modified format

σeff = D
el(ε − mεp

v), (5.9)

where D
el is the elastic stiffness matrix of the skeleton and

εp
v = −Sp

Ks
, (5.10)
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Figure 5.2: a) Coordinate system, b) Continuity conditions

represents the volumetric strain of the solid phase due to changes of the pore pressure Sp
with Ks being the bulk modulus of the solid phase. Following [2, 22, 19] allows us to
rewrite Eq. (5.8) as

σ = D
elε − α3mSp, (5.11)

where the Biot constant α reads

α = mT

(
I − D

el

3Ks

)
3m = 1 − Ksk

Ks
< 1, (5.12)

where Ksk is the bulk modulus of the porous skeleton. For a material without any pores,
Ksk = Ks. For cohesive soils we typically have Ksk << Ks and α = 1.

In view of future developments it becomes more convenient to rewrite Eq. (5.11) in
the rate form

σ̇ = D
epε̇ − α3m(Ṡp+ Sṗ) (5.13)

where ˙( ) stands for the derivative with respect to time and D
el now represents the instan-

taneous tangent stiffness matrix of the skeleton. Combining Eqs. (5.9), (5.13) and (5.10)
then renders the rate of mean effective stress to the form

σ̇eff
m = Ksk

(
ε̇v +

Ṡp+ Sṗ

Ks

)
= Kskε̇v + (1 − α)(Ṡp+ Sṗ). (5.14)

5.1.2 Transport equation - Darcy’s law

Consider a coordinate system in Fig. 5.2(a) and define the hydraulic head h as (recall
that the pore pressure p is positive when in compression)

h =
p

γw
+ y, γw = ρwg ≈ 10[kNm−3]. (5.15)
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The generalized form of Darcy’s law describing the flow in a porous medium then reads [29,
22, 19]

nSvws = −KrKsat∇h, vws = vw − vs, (5.16)

nSvws = −KrKsat (∇p− γwig) ,

where ig is the unit vector parallel to gravity, Fig. 5.2(a), vr stores the components of the
velocity vector of a given phase r = w, s and Ksat [ms−1] is the permeability matrix for
S = 1 (fully saturated soil). Several relationships are available in the literature to define
the dimensionless relative permeability Kr ∈ 〈0, 1〉 for the modeling of unsaturated flow.
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p/ γ
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(a) (b)

Figure 5.3: Variation of permeability with pore fluid pressure: a) [23, 29] , b) [10, 36]

A relatively simple linear variation of permeability with a pore fluid pressure in
Fig. 5.3(a) was used by Li and Desai [23] to model the transition between saturated and
unsaturated zones in the seepage analysis of earth dams. A more accurate relationship
assuming a log-linear variation can be found, e.g. in [29]. Both models allow for reducing
the permeability when the soil above the phreatic line sustains a tensile pore pressure.
When the soil is assumed to be above the phreatic line the permeability is reduced by
a large factor R ≈ 100 − −1000. A transition zone between the fully (S = 1) saturated
(S = Kr = 1) and fully unsaturated (S,Kr → 0) is then represented by the parame-
ter PTZ. Introducing the permeability transition zone not only supports the laboratory
observations but also stabilizes the required iterative algorithm typically based on the
modified Newton-Raphson scheme with the permeability matrix being kept constant dur-
ing iterations. Note that the log-linear variation essentially corresponds to the linearized
form of the original Van Genuchten model [36] implemented, e.g. in PLAXIS [24].

The Van Genuchten model Fig. 5.3(b) suggests the variation between the relative
permeability and the pore fluid pressure in the form

Kr =

{
1 −

(
δp

γw

)n−1 [
1 +

(
δp

γw

)n]−m
}2

[
1 +

(
δp

γw

)n]m/2
, (5.17)
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Figure 5.4: Comparison of various models: a) saturation degree, b) relative permeability

where δ, n,m = 1 − 1/n are model parameters to be estimated from observed soil water
retention data well described by the following equation

S = Sirr +
(Ssat − Sirr)[
1 +

(
δp

γw

)n]m , (5.18)

where Ssat → 1 and Sirr represents an irreducible limit of saturation, which can also be
deduced from the soil water retention curve [36]. Eq. (5.18) is also implemented in the
program ZSOIL [25] with default value of n = 2. Another relationship which offers the
relative permeability as a function of the degree of saturation was proposed in [10] in the
form

Kr =
(S − Sirr)

3

(Ssat − Sirr)3
, (5.19)

which leads with the help of Eq. (5.18) and Ssat = 1, n = 2 to [25]

Kr =
1

[
1 +

(
δp

γw

)2
]3/2

. (5.20)

Individual models are compared in Fig. 5.4. While the linearized Van Genuchten
model gives a relatively poor prediction of the degree of saturation as a function of the
pore fluid pressure it compares well with the Van Genuchten model when evaluating the
relative permeability. Both the Van Genuchten model and the log-linear transition model
are implemented in the program GEO FEM.

5.1.3 Set of governing equations

Apart from the linear momentum balance equations (equations of equilibrium) presented
in Section 1.2, Eq. (1.7), the coupled analysis of pore fluid transport throughout a de-
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forming porous medium requires the introduction of the continuity equation for the liquid
phase.

To do so we start from the mass balance equation for the solid

d[(1 − n)ρs]

dt
+ div[(1 − n)ρsvs] = 0, (5.21)

where vs represents the mass average velocity of the solid phase [22]. Taking the time
derivative of the first term in Eq. (5.21) gives

d[(1 − n)ρs]

dt
=
∂[(1 − n)ρs]

∂t
+ (vs)T∇[(1 − n)ρs]. (5.22)

The second term in Eq. (5.21) can be expanded as follows

div[(1 − n)ρsvs] = ρs(1 − n)div(vs) + (vs)T∇[(1 − n)ρs]. (5.23)

Neglecting the gradient terms in Eqs. (5.22) and (5.23) then yields

1 − n

ρs

∂ρs

∂t
− ∂n

∂t
+ (1 − n)div(vs) = 0. (5.24)

Similarly for the liquid phase we get

d(nSρw)

dt
+ div[nSρwvw] = Q, (5.25)

were Q represents any sources and/or sinks (injection or pumping rate [m3/s] in 3D or
[m3/s/m] in 2D plane strain), see Fig. 5.2(b). Following the same steps as applied to the
solid phase then leads to

n

ρw

∂ρw

∂t
+
∂n

∂t
+
n

S

∂S

∂t
+

1

S
div(nSvws) + ndiv(vs) = Q. (5.26)

After combining Eqs. (5.24) and (5.26) we finally arrive at the continuity equation for the
liquid phase

1 − n

ρs
ρ̇s +

n

ρw
ρ̇w + n

Ṡ

S
+

1

S
div(nSvws) + div(vs) = Q. (5.27)

To eliminate the mass density of the solid phase from Eq. (5.27) we first recall the mass
conservation equation in the form [19]

ρ̇s

ρs
= − V̇

s

V s
, (5.28)

and then using Eq. (5.14) express the rate of the volume change of the solid phase as

− V̇
s

V s
=
Ṡp+ Sṗ

Ks
− σ̇eff

(1 − n)Ks
=

1

1 − n

[
α− n

Ks
(Ṡp+ Sṗ) + (α− 1)div(vs)

]
. (5.29)
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Similarly, employing the mass conservation equation of the liquid phase gives

ρ̇w

ρs
=

ṗ

Kw
, (5.30)

where Kw is the bulk modulus of the pore fluid. Then after substituting Eqs. (5.29) and
(5.30) together with Eq. (5.16)1 (Darcy’s law) back into Eq. (5.27) we finally get

α− n

Ks
(Ṡp+ Sṗ) +

nṗ

Kw
+ αdiv(vs) + n

Ṡ

S
+

1

S
div (−KrKsat∇h) = Q. (5.31)

Assuming incompressibility of grains (α = 1) and fully saturated soil (S = 1) renders a
relatively simple form of Eq. (5.31)

(
1 − n

Ks
+

n

Kw

)
ṗ+ div(vs) + div (−KrKsat∇h) = Q. (5.32)

Eqs. (1.7) and (5.31) or (5.32) accompanied by the relevant boundary conditions now allow
for the solution of general time dependent consolidation problem. This step, however, goes
beyond the scope of the present text so the interested reader is referred, e.g. to [2, 22, 29,
19].

5.2 Fully undrained behavior of saturated soil

To begin we first rewrite Eq. (5.32) in the incremental form (no internal sources are
admitted Q = 0)

(
1 − n

Ks

+
n

Kw

)
∆p+ α3mT∆ε + ∆t div (−KrKsat∇h) = 0, (5.33)

noting that

ṗ =
∆p

∆t
, div(vs) = 3mT

(
∆ε

∆t

)
.

Next, suppose that an instantaneous loading under zero flux boundary conditions (no flow
across the domain boundary) is prescribed, thus letting ∆t → 0, and solve for ∆p from
Eq. (5.33) to get

∆p =
−α3mT

α− n

Ks
+

n

Kw

∆ε. (5.34)

The equilibrium equation (1.7) in the context of the principle of virtual work (1.13) now
becomes, recall Eq. (5.13),

∫

Ω

δ∆ǫT (Dep∆ε − α3m∆p) dΩ = ∆f. (5.35)
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Substituting for ∆p from Eq. (5.34) into Eq. (5.35) then provides

∫

Ω

δ∆ǫT


D

ep +
α2

α− n

Ks
+

n

Kw

I


∆ε dΩ = ∆f, (5.36)

where I is the identity matrix. Once ∆ε is known from the solution of Eq. (5.36) the
unknown increment of pore pressure ∆p then readily follows from Eq. (5.34).

As suggested in [29] a certain simplification of the new (effective) stiffness matrix Deff

Deff = D
ep +

α2

α− n

Ks

+
n

Kw

I, (5.37)

is available. To proceed, first denote

Keff =
1

α− n

Ks
+

n

Kw

, (5.38)

where Keff represents an effective bulk modulus. Providing Kw << Ks (incompressibility
of grains is adopted, α = 1) we get

1

Keff

=
n

Kw

.

Since Kw >> Ksk it is possible to set Keff = Kw. A sufficiently large number can then
be assigned to Keff , typically

Keff = (100 − 1000)Ksk.

This simplified formulation of the effective stiffness matrix also implemented in the
program GEO FEM was used to simulate an undrained triaxial test of a clayey soil. The
soil behavior was assumed to be well represented by the modified and generalized Cam
clay models. Both models were already discussed in detail in Chapter 3 and tested over a
number of examples. All calculations were, however, performed under drained boundary
conditions. The present set of numerical experiments thus serves as an additional source
of information for assessing the performance of both models.

Table 5.1: Material parameters of the selected clayey soil

Model ν [–] κ [–] λ [–] e0 [–] Mcs [–] ϕcv [◦] ϕin [◦]
Modified Cam clay 0.25 0.025 0.181 1.67 0.797 – –

Generalized Cam clay 0.25 0.025 0.181 1.67 – 34.13 40.0

The material data used in this study is listed in Table 5.1. Fig. 5.5 shows the results
derived for a normally consolidated soil loaded in the triaxial extension. Similar results
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Figure 5.5: Triaxial extension test of normally consolidated soils: a) and b) evolution of
yield surfaces for MCC and GCC models, c) stress distributions
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obtained for an overconsolidated soil are plotted in Fig. 5.6. As for the normally consoli-
dated soil the soil sample was stressed initially by the prescribed isotropic stress σx = σy

= σz = σm = -200 kPa. Then the transverse (radial) stress component was increased to
load the sample until failure. As evident from Figs. 5.5(a)(b) the yield function expands
during shearing and the material hardens. A substantial increase of the pore pressure
reduces the mean effective stress as seen in Fig. 5.6(c) and the effective stress path bends
to the left resting eventually on the critical state line.

To demonstrate the effect of overconsolidation the sample was first unloaded from the
original isotropic stress state σm = -200 kPa to σm = -20 kPa before shearing. This stress
state corresponds to the overconsolidation ratio OCR = −σm/pc = 10. When shearing,
the loading path at an early stage of loading generates only elastic strains thus having
negligible effect on the effective mean stress, while pore pressure increases. When the
yield surface is reached, the pore pressure starts to decrease due to dilatation, which in
turn increases the mean effective stress, Fig. 5.6(c). The effective stress path bends to
the right until reaching again the critical state line, Figs. 5.6(a)(b). Similar behavior was
observed experimentally, see [29, 5] for further details on this subject.

We finally point out a considerable difference in the predictions of the collapse load
evident from the stress-strain curves in Figs. 5.5(c) and 5.6(c). This is attributed to
the fact that the Lode angle dependent yield surface of the generalized Cam clay model
turns on the plastic deformations at much early stages of loading since being essentially
inscribed into the circular surface of the modified Cam clay model.

5.3 Steady state seepage

When soil deformation no longer influences the flow of pore fluid through the skeleton
(no excess pore pressure is generated during loading), the flow becomes essentially time
independent (ṗ = 0, Ṡ = 0, divvs = 0) and the continuity equation (5.32) reduces to

div (−KrKsat∇h) = Q. (5.39)

Solving Eq. (5.39) calls for the introduction of hydraulic boundary conditions. These
are either imposed fluxes (natural boundary conditions) or prescribed changes in pore
fluid pressure (essential boundary conditions). They are essentially analogous to pre-
scribed traction and displacement boundary conditions discussed in Chapter 1, Eqs. (1.9)
and (1.10). In particular, see Fig. 5.7(a), we have (the seepage boundary conditions on
Γs are treated separately in Section 5.4.2)

• Imposed fluxes qn normal to the boundary Γq - n is the outward unit normal, qn is
assumed positive when in the direction opposite to n (inflow, see Fig. 5.7)

nT(nvws) = −nT (KrKsat∇h) = −qn on Γq, (5.40)

• Prescribed pore pressure values p or hydraulic heads h on the boundary Γp

p = p or h = h on Γp, (5.41)



98 CHAPTER 5. MODELING OF GROUND WATER FLOW

n

Γs
Γq

Γp

p

Ω

Γ

seepage surfaceq

��
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

[m /s/m]3

�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

infiltration

source

extraction well

injection well
sink

[m/s]
q > 0

Q < 0

Q > 0
(a) (b)

Figure 5.7: a) Hydraulic boundary conditions, b) Infiltration, sources and sinks

Note that a closed form solution of the system of equations Eqs. (5.39) - (5.41) in not
generally available. A natural step is therefore to rewrite the continuity equation (5.39)
in the context of the principle of virtual work. To do so, recall Eq. (1.11) and write

∫

Ω

δh
(
−∇TKrKsat∇h

)
dΩ +

∫

Γq

δh
(
nTKrKsat∇h− qn

)
dΓ =

MQ∑

i=1

δhiQi, (5.42)

where MQ represents the number of pointwise applied sources Qi. Applying integration
by parts and taking into account the fact that δh = 0 on Γp gives

∫

Ω

(∇h)TKrKsat∇h dΩ =

∫

Γq

δhqn dΓ +

MQ∑

i=1

δhiQi. (5.43)

This equation can be now easily solved using the finite element method. In such a case
the distribution of the hydraulic head can be approximated using standard element shape
functions from Section 1.3.3 as

h =

n∑

i=1

Niri, (5.44)

where ri represent the nodal hydraulic heads. The finite element equations derived by
substituting for h from Eq. (5.44) into Eq. (5.43) now become

Hr = fh, (5.45)

where r stands for the vector of nodal hydraulic heads and

H =

∫

Ω

B
TKrKsatB(= ∇N) dΩ, (5.46)

fh =

∫

Γp

N
T
Nqn dΓ +

MQ∑

i=1

δhiQi, (5.47)



5.3. STEADY STATE SEEPAGE 99

k=1 m/day

�
�
�
�

h=0m

[0,0]

30m

15
m

p=0

q=0
��
��
��
��

q=0

[0,0]

k=1 m/day

6m

h=6m

4m

p = 0

drain

q=0

11m

q=0

6m

(a) (b)

Figure 5.8: Examples: a) confined flow, b) unconfined flow

where Qi are the nodal values of prescribed sources and/or sinks, which may correspond
to injection or pumping rates representing for example the effect of injection or extraction
wells as shown schematically in Fig. 5.7(b). Similarly, prescribing qn allows for simulat-
ing pore fluid flows across a boundary of the finite element mesh, e.g. infiltration rate
Fig. 5.7(b). In the simplest case, in which no fluid is transferred across the boundary
Γq the imposed flux qn =0. In comparison with the solution of pure deformation of a
soil body these boundary conditions correspond to prescribed surface tractions. Finally,
prescribed values of the incremental nodal hydraulic heads Eq. (5.41) can be dealt with
in the same fashion as when prescribing the nodal displacements.

When the permeability matrixKrKsat is constant and the flow is confined (the phreatic
line is known), the solution of Eq. (5.45) reduces to a single inversion of the matrix H.
If, on the other hand, the flow is unconfined (the phreatic line unknown), an iterative
scheme must be employed to solve Eq. (5.45). Typically, the modified Newton-Raphson
scheme or rather the initial stress method is employed. The solution then proceeds as
follows. Define a vector of unbalanced forces at the beginning of the ith iteration

∆f i = fh − Ri, (5.48)

where

Ri = Hri, ri = ri−1 + ∆r, ∆r = H
−1
sat∆f i−1, (5.49)

Hsat =

∫

Ω

B
T
KsatB dΩ. (5.50)

Therefore, at each iteration the increments of hydraulic heads are calculated for a given
increment of the unbalanced forces found from Eq. (5.48) and added to the total heads.
This procedure is repeated until a certain convergence criterion is reached. Further details
can be found in [15].

A typical example of a confined flow is a triangular dam with the water level reach-
ing the crest of the dam. The geometry and relevant boundary conditions appear in
Fig. 5.8(a). The corresponding nodal values of the hydraulic head follows directly from
Eq. (5.49)3. No iterations are needed in this particular case since the permeability matrix
is assumed constant and the analysis does not involve the phreatic line.
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Figure 5.9: Example of a confined flow - triangular dam: a) FE mesh, b) distribution of
flux, c) distribution of hydraulic head, d) distribution of pore pressure

(a) (b)

(c) (d)

Figure 5.10: Example of unconfined flow - influence of transition law: a) Linear law with
PTZ=0.5m and pmin = 0, b) Linear law with PTZ=1m and pmin = 0, c) Log-linear law
with PTZ=1m and pmin = 0, d) Van Genuchten model with Sirr = 0, Ssat = 1, n = 2, δ =
0.15m−1
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On the contrary, Fig. 5.8(b) illustrates a typical example of unconfined flow which
clearly requires free-surface (phreatic line) tracking since its location is not known a
priory. Owing to the prescribed boundary conditions (assumed drain at the bottom of
the dam) there is no seepage surface to be considered along the downstream boundary.
Also, no drawdown is expected along the boundary on the left hand side of the dam.
While still relatively simple, the solution of this problem can only be handled with the
iterative scheme represented by Eqs. (5.48) and (5.49). The results are plotted in Fig. 5.10.
Contours of the pore fluid pressure distribution including the zero-pressure line (phreatic
line) were found from Eq. (5.18) using the parameter setting for the Van Genuchten
model (see caption in Fig. 5.10). All three pore pressure transition zone models discussed
previously in Section 5.1.2 were considered. It is evident that all models can deliver the
same results providing the model parameters are suitably chosen. Nevertheless, the Van
Genuchten model for the evaluation of Kr is set as default in GEO FEM since it is directly
related to Eq. (5.18) and its parameters, as already mentioned, can be estimated with
relative simplicity from soil water retention data [36].

No convergence difficulties were encountered in this particular example for any of
the three models. However, replacing the assumed homogeneous body with a layered
soil having considerable differences in permeabilities between various layers may lead to
ill conditioning of the flow matrix H in Eq. (5.45) causing numerical instabilities and
consequently the loss of convergence of the system of equations (5.49). Care therefore
must by taken when expecting too large differences, typically exceeding 105, between the
highest and lowest permeability value.

5.4 Flow through a thin zone - modeling of interfaces

In many real situations we often need to deal with flow across or along an interface of
two layers having marginally different permeabilities. Although two nodes, one for each
layer, are generated by default along the common boundary a fully permeable boundary
condition is assumed by tying the corresponding hydraulic head degrees of freedom of the
adjacent nodes. Treating impermeable or partially permeable boundaries requires on the
other hand the introduction of interface elements into the finite element model. Interface
elements can also be used to either block the flow across an impermeable sheeting wall or
to represent a drain by easing flow along the longitudinal direction of the interface. Special
attention is required when seepage interface elements are used when the seepage surface
(a part of the finite element mesh boundary where the applicable hydraulic conditions
are not known a priori) is encountered. Formulation and implementation of both types
of interface element will be now discussed in greater detail.

5.4.1 Thin zone interface element

Fig. 5.11 shows three particular conditions which may occur when simulating flow through
a thin interfacial zone. Example A represents a fully impermeable boundary. This is the
most simple case when interface elements do not essentially contribute to the governing
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Figure 5.11: Hydraulic boundary conditions on interface

system of equations which in turn results into a discontinuous pore pressure field. To
enforce pore pressure continuity (pt = pb) in the case of a fully permeable boundary,
example B, it is sufficient to tie the corresponding hydraulic head (pore pressure) degrees
of freedom along the interface without actually formulating interface elements to account
for flow. The intermediate boundary conditions (example C), which may include both
the above two extremes, must however be handled by interface elements.
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Figure 5.12: Flow through a thin zone

Fig. 5.12 shows a simplified representation of flow both in the longitudinal (s) and
normal (n) direction of a thin interfacial zone with s, n representing the local coordinate
system. Since interface elements have zero thickness we get (for the local coordinate
system)

h =
p

γw
. (5.51)

Darcy’s law then assumes the following form

nvws = −Ksat∇h = −Ksat

γw
∇p, (5.52)
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and the continuity condition (5.32) reduces to

n

Kw
ṗ+ mTdiv(vs) + div(−Ksat∇h) = 0. (5.53)

In 2D the vector m now has the components (0, 1) and the permeability matrix reads

Ksat =

[
ks 0
0 kn

]
, (5.54)

where ks, kn are the permeabilities in the longitudinal and normal direction, respectively.
The corresponding fluxes are given by, see Fig. 5.12,

qs = −ks
1

2

∂(ht + hb)

∂s
, (5.55)

qn = −kn
ht − hb

d
, (5.56)

where d is a virtual thickness of the interface. Similarly we define the velocity components
of the solid phase so that

div(vs) = vs
s + vs

n =
1

2

∂((u̇s
s)

t + (u̇s
s)

b)

∂s
+

(u̇s
n)t − (u̇s

n)b

d
. (5.57)

Providing we are interested only in steady state conditions Eq. (5.53) considerably sim-
plifies (note the similarity with Eq. (5.39))

div(−Ksat∇h) = 0. (5.58)

A weak form of Eq. (5.58) leads again, after finite element discretization, to Eq. (5.45)
where the B matrix in Eq. (5.46) is now provided by

• 4-node interface element

B =




1

2J

∂N1

∂ξ

1

2J

∂N2

∂ξ

1

2J

∂N1

∂ξ

1

2J

∂N2

∂ξ

−N1

d
−N2

d

N1

d

N2

d


 , (5.59)

• 6-node interface element

B =




1

2J

∂N1

∂ξ

1

2J

∂N2

∂ξ

1

2J

∂N3

∂ξ

1

2J

∂N1

∂ξ

1

2J

∂N2

∂ξ

1

2J

∂N3

∂ξ

−N1

d
−N2

d
−N3

d

N1

d

N2

d

N3

d


 , (5.60)

where Ni are the element shape functions for either 2-node or 3-node rod element discussed
already in Section 1.3.4, Table 1.7, and J = L/2 is the Jacobian with L being the element
length.
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Figure 5.13: Modeling of confined interfacial flow: geometry and boundary conditions
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Figure 5.14: Modeling of interfacial flow - results: a) impermeable dam, permeable cur-
tain, no interface elements, b) impermeable dam, permeable curtain - interface elements,
c) membrane and curtain fully permeable, d) drain and impermeable curtain, e) permeable
membrane and impermeable curtain, f) drain and permeable curtain
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Figure 5.15: Example of unconfined flow: modeling of flow through a seepage surface: a)
h=0.2m, b) h=0

An example illustrating the use of interface elements is shown in Fig. 5.13. For simplic-
ity a confined flow through a triangular dam was considered again. A sealing membrane
at the bottom of the dam and an impervious curtain were introduced to simulate drain
and flow around an impermeable wall. Both a membrane and a grout curtain are modeled
by interface elements. Their contribution to the finite element equations then depends on
the values assigned to interfacial permeabilities ks, kn.

When no restriction to flow through interface elements is assumed then these are either
excluded from the finite element mesh or their permeabilities are assigned very high values
(1000 times the permeability of the soil was used in this example) resulting, in both cases,
in a continuous pore pressure distribution. This option is examined in Figs. 5.14(a)(b)
considering the dam to represent a fully impermeable concrete block. The part of the
boundary on the bottom of the dam is then assigned a zero flux boundary condition
qn = 0 by default. When on the other hand the interface elements are used to block
the flow (impermeable wall) then the values of both ks and kn are set to zero producing
a discontinuous distribution of pore pressures. This is evident from Figs. 5.14(d)-(f).
Compare then with Fig. 5.14(c) where no restrictions to flow were imposed. Intermediate
conditions can also be specified to simulate specific drain conditions by allowing for fluid
to flow freely in the longitudinal direction while blocking the flow in the perpendicular
direction. Such conditions were assigned to a sealing membrane by setting ks = 1000× the
soil permeability and kn = 0. The corresponding results are plotted in Figs. 5.14(d)(e).
Notice again the discontinuity in the pore pressure isolines.

5.4.2 Seepage surface

To introduce the subject consider two examples of a rectangular dam in Fig. 5.15. It is
a relatively complex problem as it involves both a phreatic surface separating saturated
and unsaturated zones inside the dam and a seepage surface on the right hand side of the
dam where the characteristic hydraulic conditions are not known a priory. While qn = 0
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is a correct boundary condition above the point where the phreatic surface touches the
seepage surface (S < 0, h < 0 inside the domain), below this point along the seepage
surface the pore fluid pressure becomes zero (it should rather be in equilibrium with the
atmospheric pressure, but that is taken as a reference pressure) since water is free to flow
across the boundary (S = 1, h = y). This problem was studied, e.g. in [15] by changing
the boundary conditions during an iterative solution (either prescribed flux or prescribed
hydraulic heads) whenever necessary owing to the fact that the exit point is not known
in advance.

Switching from one type of boundary condition to the other may cause substantial dif-
ficulty in coding the finite element program. While the flux boundary condition Eq. (5.40)
is automatically satisfied by the weak formulation the imposed hydraulic head boundary
condition, Eq. (5.41) reduces the number of active degrees of freedom. An elegant way to
deal with these seepage boundary conditions was suggested in [1] by formulating special
seepage interface elements in the framework of the penalty method. The main advan-
tage of these elements is the possibility of distinguishing between internal and external
hydraulic conditions. When introduced along a boundary inside the domain it further al-
lows us to simulate a constant pore pressure jump across the interface. A similar approach
was adopted in [35] when solving the coupled heat and moisture transport in masonry
structures.

The use of these special interface elements can be avoided providing the Newton-Cotes
integration scheme is assumed. The seepage boundary conditions apply directly to the
boundary nodes and can be introduced through a nonlinear spring model by defining a
flux through the surface in the form

qn = kv(h− hext), (5.61)

where kv is a fictitious permeability (a spring constant) that must be sufficiently large
to ensure that h = hext at the boundary nodes where a nonzero external pressure is
prescribed. Imposing external pressures through Eq. (5.61) appears useful when the
location of zero external pressure changes with time, which may occur not only on the
downstream face of the dam but also on the upstream face during filling or drawdown.
Since only steady state flow is considered herein the external pressure does not change
with time and can be imposed directly on the respective degrees of freedom. The seepage
surface then becomes adequate only for that part of the boundary where pext = 0 (flow
at atmospheric pressure). The seepage boundary conditions on Γs can then be written as

qn = kv(h− y), if h > 0 (S = 1) in the domain and pext = 0, (5.62)

qn = 0, if h < 0 (S < 1) in the domain and pext = 0, (5.63)

where the zero flux boundary condition Eq. (5.63) is generated by setting kv = 0. Note
that this is exactly the same approach as used with tension excluded spring supports
in purely mechanical analyses. Incorporating Eq. (5.62) into the finite element analysis
requires the weak form, Eq. (5.43), to be modified as

Fint +
Ms∑

i=1

δhikvhi|Γs
= Fext +

Ms∑

i=1

δhikvyi|Γs
, (5.64)
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(a) (b)

Figure 5.16: Modeling of seepage surface (Van Genuchten model with Sirr = 0, Ssat =
1, n = 2, δ = 0.01m−1): a) h=0.2m, b) h=0

where Ms is the number of nodes on the seepage surface and yi is the respective y-
coordinate of the node.

This particular approach was employed to solve the two problems in Fig 5.15. Note
that for boundaries well above the phreatic line where no seepage is expected (the top
boundary in Fig. 5.15 or the downstream boundary in Fig. 5.8(b)) it may be more appro-
priate to directly prescribe the no flow conditions qn = 0 rather then let this condition be
generated through the seepage surface Eq. (5.63). The results are plotted in Fig. 5.16. The
variation of nodal fluxes clearly show the difference between the two example problems.
It is worth noting that the solution is not as much dependent on the penalty stiffness kv

as it is on the parameters of the Van Genuchten model. While the algorithm succeeded
in finding the exit point on the seepage surface, it failed to provide a sufficiently accurate
distribution of pore pressure profile in the vicinity of that point.
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